Comparison of microbial communities in three different mine drainages and their bioleaching efficiencies to low grade of chalcopyrite

Hua-qun Yin , Guan-zhou Qiu , Dian-zuo Wang , Lin-hui Cao , Zhi-min Dai , Jie-wei Wang , Xue-duan Liu

Journal of Central South University ›› 2007, Vol. 14 ›› Issue (4) : 460 -466.

PDF
Journal of Central South University ›› 2007, Vol. 14 ›› Issue (4) : 460 -466. DOI: 10.1007/s11771-007-0090-4
Article

Comparison of microbial communities in three different mine drainages and their bioleaching efficiencies to low grade of chalcopyrite

Author information +
History +
PDF

Abstract

Microbial community diversities in the drainage from three mines (Dexing Copper Mine, Qibaoshan Copper Mine and Yaogangxian Tungsten Mine, China) were analyzed using 16S rDNA PCR-RFLP approach. The efficiencies of clalcopyrite bioleaching were compared using enrichment of the three cultures. Phylogenetic analysis indicates that the dominant microorganisms are clustered with the Proteobacteria, the remaining is affiliated with Nitrospira, Acidobacteria and Actinobacteria. At the genus level, Acidithiobacillus is the dominant group in both YTW and QBS samples, while Spingomonas is dominant in YGX sample. Moreover, the principal component analysis (PCA) reveals that QBS and YTW have similar geochemical character and microbial communities. The results also show that pH value and tungsten concentration play a key role in microbial community distribution and relative abundance. The bioleaching efficiency of the enrichment cultures from YTW and QBS is similar. After 15 d, the bioleaching rates of low grade chalcopyrite (0.99%) are both up to 99.5% when using 10 g/L pulp density due to the similar microbial composition of YTW and QBS. Moreover, the leaching efficiencies of enrichment cultures containing multiple bioleaching microorganisms are higher than that of pure culture Acidithiobacillus ferrooxidans.

Keywords

microbial community diversity / PCR-RFLP / principal component analysis / chalcopyrite / bioleaching

Cite this article

Download citation ▾
Hua-qun Yin, Guan-zhou Qiu, Dian-zuo Wang, Lin-hui Cao, Zhi-min Dai, Jie-wei Wang, Xue-duan Liu. Comparison of microbial communities in three different mine drainages and their bioleaching efficiencies to low grade of chalcopyrite. Journal of Central South University, 2007, 14(4): 460-466 DOI:10.1007/s11771-007-0090-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BakerB. J., BanfieldJ. F.. Microbial communities in acid mine drainage[J]. FEMS Microbiology Ecology, 2003, 44(2): 139-152

[2]

OkibeN., GerickeM., HallbergK.B., et al.. Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation[J]. Applied and nvironmental Microbiology, 2003, 69(4): 1936-1943

[3]

DopsonM., Baker-AustinC., HindA., et al.. Characterization of Ferroplasma Isolates and Ferroplasma acidarmanus sp. nov., extreme Acidophiles from acid mine drainage and industrial bioleaching environments[J]. Applied and Environmental Microbiology, 2004, 70(4): 2079-2088

[4]

JohnsonD. B., HallbergK. B.. The microbiology of acidic mine waters[J]. Research in Microbiology, 2003, 154(7): 466-473

[5]

Lo’Pez-ArchillaA. I., AmilsR.. A comparative ecological study of two acidic rivers in southwestern spain[J]. Microb Ecol, 1999, 38(2): 146-156

[6]

WenX.-h., HerbertE. A.. Mobilization of heavy metals from Le An River sediment[J]. Science of the Total Environment, 1999, 227(2/3): 101-108

[7]

ZhouJ. M., BrunsA., TiedjeJ. M.. DNA recovery from soils of diverse composition[J]. Appl Environ Microbiol, 1996, 62(2): 316-322

[8]

HurtR. A., QuiX., WuL., et al.. Simultaneous recovery of RNA and DNA from soils and sediments[J]. Appl Environ Microbiol, 2001, 67(10): 4495-4503

[9]

O’sullivanL. A., WeightmanA. J., FryJ. C.. New degenerate cytophaga-flexibacter-bacteroides-specific 16S ribosomal DNA-targeted oligonucleotide probes reveal high bacterial diversity in river taff epilithon[J]. Appl Environ Microbiol, 2002, 68(1): 201-210

[10]

SmithS. W., OverbeekR., WoeseC. R., et al.. The genetic data environment: An expandable GUI for multiple sequence analysis[J]. Comput Applic Biosci, 1994, 10(6): 671-675

[11]

DopsonM., Baker-AustinC., RamK. P., et al.. Growth in sulfidic mineral environments: Metal resistance mechanisms in acidophilic micro-organisms[J]. Microbiology, 2003, 149(8): 1959-1970

[12]

MARGALEF R. Information theory in ecology[J]. Genetics and Systematics, 1958(3): 36–71.

[13]

JenniferL. K., LeeA., PeterM., et al.. Methods of studying soil microbial diversity[J]. Journal of Microbiological Methods, 2004, 58(2): 169-188

[14]

BrasseurG., BruscellaP., BonnefoyV., et al.. The bel complex of the iron-grown acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans functions in the reverse but not in the forward direction—Is there a second bc(1) complex?[J]. Biochim Biophys Acta, 2002, 1555(1): 37-43

[15]

LiuX.-d., SoniaM. T., GinaH., et al.. Molecular diversity of denitrifying genes in continental margin sediments within the oxygen-deficient zone off the pacific coast of mexcol[J]. Appl Environ Microbiol, 2003, 69(6): 3546-3560

[16]

YabuuchiE., YanoI., OyaizuH., et al.. Puposals of Sphingomonas gen. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov. Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus[J]. Microbiol Immunol, 1990, 34(2): 99-119

[17]

DuttaT. K., SelifonovS. A., GunsalusI. C.. Oxidation of methyl-substituted naphthalenes: Pathways in a versatile Sphingomonas paucimobilis strain[J]. Appl Environ Microbiol, 1998, 64(5): 1884-1889

[18]

ZhouJ.-z., XiaB.-c., HuangH.-s., et al.. Microbial diversity and heterogeneity in sandy subsurface[J]. Appl Environ Microbiol, 2004, 70(3): 1723-1734

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/