Modeling effects of constituents and dispersoids on tensile ductility of aluminum alloy

Min Song , Kang-hua Chen , Xiong-wei Qi

Journal of Central South University ›› 2007, Vol. 14 ›› Issue (4) : 456 -459.

PDF
Journal of Central South University ›› 2007, Vol. 14 ›› Issue (4) : 456 -459. DOI: 10.1007/s11771-007-0089-x
Article

Modeling effects of constituents and dispersoids on tensile ductility of aluminum alloy

Author information +
History +
PDF

Abstract

The modeling effects of constituents and dispersoids on the tensile ductility of aluminum alloy were studied. The results show that the tensile ductility decreases with the increase of the volume fraction and size of constituents. Thus, purification can improve the tensile ductility by decreasing the volume fraction of constituents (normally compositions of Fe and Si) and the first-class microcracks. The model also indicates that the tensile ductility decreases with the increase in the volume fraction of dispersoids. Decreasing the volume fraction of dispersoids along the grain boundaries by proper heat-treatment and improving the cohesion strength between dispersoids and matrix can also improve the tensile ductility by decreasing the volume fraction of the second-class microcracks.

Keywords

aluminum alloy / tensile ductility / modeling / deformation / fracture

Cite this article

Download citation ▾
Min Song, Kang-hua Chen, Xiong-wei Qi. Modeling effects of constituents and dispersoids on tensile ductility of aluminum alloy. Journal of Central South University, 2007, 14(4): 456-459 DOI:10.1007/s11771-007-0089-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LudtkaG. M., LaughlinD. E.. The influence of microstructure and strength on the fracture mode and toughness of 7XXX series aluminum alloys[J]. Metall Trans A, 1982, 13(2): 411-425

[2]

DeshpandeN. U., GokhaleA. M., DenzerD. K., et al. . Relationship between fracture toughness, fracture path, and microstructure of 7050 aluminum alloy: Part I. Quantitative characterization[J]. Metall Trans A, 1998, 29(5): 1191-1201

[3]

HornbogenE., GräfM.. Fracture toughness of precipitation hardened alloys containing narrow soft zones at grain boundaries[J]. Acta Metall, 1977, 25(4): 877-881

[4]

JataK. V., StarkeE. A.. Fatigue crack growth and fracture toughness behavior of an Al-Li-Cu alloy[J]. Metall Trans A, 1986, 17(5): 1011-1026

[5]

LiuG., ZhangG.-j., DingX.-d., et al. . A model for fracture toughness of high strength aluminum alloys containing second particles of various sized scales[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(3): 706-713

[6]

HornbogenE., StarkeE. A.. Theory assisted design of high strength low alloy aluminum[J]. Acta Metall Mater, 1993, 41(1): 1-16

[7]

GokhaleA. M., DeshpandeN. U., DenzerD. K., et al. . Relationship between fracture toughness, fracture path, and microstructure of 7050 aluminum alloy: Part II. Multiple micromechanisms-based fracture toughness model[J]. Metall Trans A, 1998, 29(6): 1203-1210

[8]

LiuG., ZhangG. J., DingX. D., et al. . The influence of multiscale-sized second-phase particles on ductility of aged aluminum alloys[J]. Metall Trans A, 2004, 35(10): 1725-1734

[9]

RovenH. J.. A model for fracture toughness prediction in aluminum alloys exhibiting the slip band decohesion mechanism[J]. Scripta Metall Mater, 1992, 26(5): 1383-1391

[10]

LiuG., SunJ., NanC. W., et al. . Experimental and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys[J]. Acta Mater, 2005, 53(10): 3459-3468

[11]

LiuG., ZhangG. J., DingX. D., et al. . Dependence of fracture toughness on multiscale second phase particles in high strength Al alloys[J]. Mater Sci Tech, 2003, 19(7): 887-896

[12]

LiuG., ZhangG.-j., DingX.-d., et al. . Model for tensile ductility of high strength Al alloys containing second particles of various sized scales[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(1): 1-10

[13]

HutchinsonJ. W.. Singular behavior at the end of a tensile crack in a hardening material[J]. J Mech Phys Solids, 1968, 16(1): 13-31

[14]

RiceJ. R., RosengrenG. F.. Plane strain deformation near a crack tip in a power-law hardening material[J]. J Mech Phys Solids, 1968, 16(1): 1-12

[15]

KanninenM. F., PopelarC. H.Advanced Fracture Mechanics[M], 1985, New York, Oxford University Press: 300

[16]

DowlingN. E.. J-integral estimates for cracks in infinite bodies[J]. Eng Fract Mech, 1987, 26(2): 333-348

[17]

WalshJ. A., JataK. V., StarkeE. A.. The influence of Mn dispersoid content and stress state on ductile fracture of 2134 type Al alloys[J]. Acta Metall, 1989, 37(9): 2861-2871

[18]

DumontD., DeschampsA., BrechetY.. On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy[J]. Mater Sci Eng A, 2003, A356: 326-336

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/