Thermal contact conductance at continuous roll-casting interface

Shi-cheng Hu , Wei-ce Ma , Lei Du , Xiao-qian Li , Jue Zhong

Journal of Central South University ›› 2007, Vol. 14 ›› Issue (3) : 374 -379.

PDF
Journal of Central South University ›› 2007, Vol. 14 ›› Issue (3) : 374 -379. DOI: 10.1007/s11771-007-0074-4
Article

Thermal contact conductance at continuous roll-casting interface

Author information +
History +
PDF

Abstract

The effects of surface roughness, strain rate, friction coefficient and pressure on real contact area were analyzed based on the research of Stupkiewicz. The real contact area model taking account of the effect of friction and deformation of material was obtained. The model of contact conductance at the rolling interface was obtained by integrating the specific feature of heat transfer through the interface of continuous roll-casting. The results indicate that the real contact area increases obviously when the material is under yield, and the real contact area varies inversely with surface roughness, whereas it varies exponentially with friction coefficient, strain rate and pressure, and the power factor depends on strain rate.

Keywords

real contact area / strain rate / pressure / thermal contact conductance

Cite this article

Download citation ▾
Shi-cheng Hu, Wei-ce Ma, Lei Du, Xiao-qian Li, Jue Zhong. Thermal contact conductance at continuous roll-casting interface. Journal of Central South University, 2007, 14(3): 374-379 DOI:10.1007/s11771-007-0074-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChangJ. C., WengC. I.. Numerical modeling of twin-roll casting by the coupled fluid flow and heat transfer model[J]. International Journal for Numerical Methods in Engineering, 1997, 40(3): 493-509

[2]

BradburyP. J., HuntJ. D.. Coupled fluid flow, deformation and heat transfer model for a twin roll caster[J]. Minerals, Metals & Materials Soc, 1995, 125(2): 739-746

[3]

SeyedeinS. H., HasanM.. Numerical simulation of turbulent flow and heat transfer in the wedge-shaped liquid metal pool of a twin-roll caster[J]. Numerical Heat Transfer, Part A: Application, 1997, 31(2): 393-410

[4]

JarryP., ToitotD., MenetP. Y.. Thermo-mechanical modeling of 3C roll casting of alloys[J]. Metals & Materials Soc, 1996, 47(4): 905-911

[5]

YunM., HuntJ. D., EdmondsD. V.. Heat line formation during roll-casting of aluminum alloys at thin gauges[J]. Journal de Physique, 1993, 3(7): 227-230

[6]

YunM., LokyerS., HuntJ. D.. Twin roll casting of aluminum alloys[J]. Material Science and Engineering A, 2000, A280(1): 116-123

[7]

WangB., ZhangJ., ZhangY., et al.. Numerical and physical simulation of a twin-roll strip caster[J]. Journal of University of Science and Technology Beijing, 2006, 13(5): 393-400

[8]

SantosC. A., SpimJ. A., GarciaA.. Modeling of solidification in twin-roll strip casting[J]. Journal of Materials Processing Technology, 2000, 102(1/3): 33-39

[9]

CooperM. G., MikicB. B., YovanovichM. M.. Thermal contact conductance[J]. Int J Heat Mass Transfer, 1969, 23(12): 279-300

[10]

StupkiewiczS., MorzZ.. Phenomenological model of real contact area evolution with account for bulk plastic deformation in metal forming[J]. International Journal of Plasticity, 2003, 19(2): 323-344

[11]

SutcliffeM. P. F.. Surface asperity deformation in metal forming process[J]. Int J Mech Sci, 1988, 30(11): 847-868

[12]

PhillpJ., DenisT., PierreY. M.. Thermo-mechanical modeling of 3C roll casting of alloys[J]. Light Metals, 1996, 15(4): 905-911

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/