Synthesis and characterization of triclinic structural LiVPO4F as possible 4.2 V cathode materials for lithium ion batteries

Sheng-kui Zhong , Zhou-lan Yin , Zhi-xing Wang , Qi-yuan Chen

Journal of Central South University ›› 2007, Vol. 14 ›› Issue (3) : 340 -343.

PDF
Journal of Central South University ›› 2007, Vol. 14 ›› Issue (3) : 340 -343. DOI: 10.1007/s11771-007-0067-3
Article

Synthesis and characterization of triclinic structural LiVPO4F as possible 4.2 V cathode materials for lithium ion batteries

Author information +
History +
PDF

Abstract

A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted under an Ar atmosphere to yield VPO4. The transition-metal reduction is facilitated by the CTR based on C→CO transition. These CTR conditions favor stabilization of the vanadium as V3+ as well as leaving residual carbon, which is useful in the subsequent electrode processing. Secondly, VPO4 reacts with LiF to yield LiVPO4F product. The property of the LiVPO4F was investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD studies show that LiVPO4F synthesized has triclinic structure(space group p

\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\overline 1 $$\end{document}
), isostructural with the naturally occurring mineral tavorite, LiFePO4·OH. SEM image exhibits that the particle size is about 2 μm together with homogenous distribution. Electrochemical test shows that the initial discharge capacity of LiVPO4F powder is 119 mA·h/g at the rate of 0.2C with an average discharge voltage of 4.2V (vs Li/Li+), and the capacity retains 89 mA·h/g after 30 cycles.

Keywords

lithium ion batteries / cathode material / LiVPO4F / carbon-thermal reduction method

Cite this article

Download citation ▾
Sheng-kui Zhong, Zhou-lan Yin, Zhi-xing Wang, Qi-yuan Chen. Synthesis and characterization of triclinic structural LiVPO4F as possible 4.2 V cathode materials for lithium ion batteries. Journal of Central South University, 2007, 14(3): 340-343 DOI:10.1007/s11771-007-0067-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChenZ. H., DahnJ. R.. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density[J]. J Electrochem Soc, 2002, 149(9): A1184-A1189

[2]

TakahashiK., SaitohM., AsakuraN., et al.. Electrochemical properties of lithium manganese oxides with different surface areas for lithium ion batteries[J]. J Power Sources, 2004, 136: 115-121

[3]

ArachiY., KobayashiH., EmuraS., et al.. Li de-intercalation mechanism in LiNi0.5Mn0.5O2 cathode material for Li-ion batteries[J]. Solid State Ionics, 2005, 176(9/10): 895-903

[4]

LiuQ. Y., LiuH. W., ZhouX. W., et al.. A soft chemistry synthesis and electrochemical properties of LiV3O8 as cathode material for lithium secondary batteries[J]. Solid State Ionics, 2005, 176(17/18): 1549-1554

[5]

ParkS. H., SunY. K.. Synthesis and electrochemical properties of 5 V spinel LiNi0.5Mn0.5O4 cathode material prepared by ultrasonic spray pyrolysis method[J]. Electrochemica Acta, 2004, 50(2/3): 427-430

[6]

ParkS. H., OhS. W., MyungS. T., et al.. Effects of synthesis condition on LiNi1/2Mn3/2O4 cathode material prepared by ultrasonic spray pyrolysis method[J]. Solid State Ionics, 2005, 176(5/6): 481-486

[7]

DengL.-f., LiX.-h., XiaoL.-x., et al.. Synthesis and electrochemical properties of polyradical cathode material for lithium second batteries[J]. J Cent South Univ Technol, 2003, 10(3): 190-193

[8]

PanhiA. K., NanjundaswamyK. S., GoodenpughJ. B.. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. J Electrochem Soc, 1997, 144(4): 1188-1194

[9]

HuY. Q., DoeffM. M., KosteckiR., et al.. Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries[J]. J Electrochem Soc, 2004, 151(8): A1279-A1285

[10]

PatouxS., WurmC., MorcretteM., et al.. A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3[J]. J Power Sources, 2003, 119–121: 278-284

[11]

RichardsonT. J.. Phosphate-stabilized lithium intercalation compounds[J]. J Power Sources, 2003, 119–121: 262-265

[12]

ZhouF., KangK., MaxischT., et al.. The electronic structure and band gap of LiFePO4 and LiMnPO4[J]. Solid State Communications, 2004, 132(3/4): 181-186

[13]

ZaneD., CarewskaM., ScaciaS., et al.. Factor affecting rate performance of undoped LiFePO4[J]. Electrochimica Acta, 2004, 49(25): 4259-4271

[14]

BARKER J, SAIDI M Y, SWOYER J. Lithium Metal Fluorophosphates Materials and Preparation Thereof[P]. US 6387568, 2002.

[15]

BarkerJ., SaidiM. Y., SwoyerJ., et al.. Electrochemical insertion properties of the novel lithium vanadium fluorophosphates, LiVPO4F[J]. J Electrochem Soc, 2003, 150(10): A1394-A1398

[16]

BaranE. J.. Materials belonging to the CrVO4 type: preparation, crystal chemistry and physicochemical properties[J]. J Mater Sci, 1998, 33: 2479-2497

[17]

BarkerJ., GoverR. K. B., BurnsP., et al.. Structural and electrochemical properties of lithium vanadium fluorophosphates, LiVPO4F [J]. J Electrochem Soc, 2005, 152(9): A1776-A1779

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/