First-principle investigation on stability of Co-doped spinel λ-Mn4−xCoxO8

Ke-long Huang , Chun-an Chen , Su-qin Liu , Qiong Luo , Zhi-guo Liu

Journal of Central South University ›› 2007, Vol. 14 ›› Issue (2) : 186 -190.

PDF
Journal of Central South University ›› 2007, Vol. 14 ›› Issue (2) : 186 -190. DOI: 10.1007/s11771-007-0037-9
Article

First-principle investigation on stability of Co-doped spinel λ-Mn4−xCoxO8

Author information +
History +
PDF

Abstract

The mechanism of stability of Co-doped spinel λ-MnO2 that is referred to as spinel LixMn2O4 (x=0) was studied by using the first-principle calculation method. The total energy and formation enthalpy can be decreased remarkably due to the Co substation, resulting in a more stable structure of λ-MnxCr2−xO4. The bond order and DOS analysis were given in detail to explain the nature of stability improvement. The calculated results show that as the content of Co dopant increases, the bond order of Mn—O becomes larger and the peak of density of states around Fermi level shifts toward lower energy. The charge density distribution illustrates that the Mn—O bonding is ionic and partially covalent, and the covalent Mn—O bonding becomes stronger with the increase of Co dopant content. The results confirm that the Co-doping will enhance the stability of λ-MnO2 and hence improve the electrochemistry performance of LixMn2O4.

Keywords

first-principles / stability / electrochemical performance / Co-doped λ-MnO2

Cite this article

Download citation ▾
Ke-long Huang, Chun-an Chen, Su-qin Liu, Qiong Luo, Zhi-guo Liu. First-principle investigation on stability of Co-doped spinel λ-Mn4−xCoxO8. Journal of Central South University, 2007, 14(2): 186-190 DOI:10.1007/s11771-007-0037-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AydinolM. K., KohanA. F., CederG., et al.. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides[J]. Physical Review B, 1997, 56(3): 1354-1365

[2]

AroraP., PopovB. N., WhiteR. E.. Electrochemical investigation of cobalt-doped LiMn2O4 as cathode material for Li-ion batteries[J]. Journal of the Electrochemical Society, 1998, 145(3): 807-815

[3]

GummowR. J., DekockA., ThackerayM. M.. Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (Spinel) cells[J]. Solid State Ionics, 1994, 69(1): 59-67

[4]

LiuY., FujiwararT., YukawaH., et al.. Chemical bonding in lithium intercalation compound LixMn2O4(x=0, 1, 2)[J]. Electrochimica Acta, 2001, 46: 1151-1159

[5]

ShiS.-q., WangD.-s., MengS., et al.. First-principles studies of cation-doped spinel LiMn2O4 for lithium ion batteries[J]. Physical Review B, 2003, 67: 115130-115136

[6]

GuohuaL., IkutaH., UchidaR., et al.. The spinel phases LiMyMn2−yO4 (M=Co,Cr,Ni) as the cathode for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1996, 143(1): 178-182

[7]

BanovB., TodorovY., TrifonovaA.. LiMn2−xCoxO4 cathode with enhanced cycle ability[J]. Journal of Power Sources, 1997, 68: 578-581

[8]

AmineK., TukamotoH., YasudaH., et al.. Preparation and electrochemical investigation of LiMn2−xMexO4 (Me:Ni, Fe, and x=0.5, 1) cathode materials for secondary lithium batteries[J]. Journal of Power Sources, 1997, 68: 604-608

[9]

MiuraK., YamadaA., TanakaM.. Electric states of spinel LixMn2O4 as a cathode of the rechargeable battery[J]. Electrochimica Acta, 1996, 41: 249-256

[10]

CederG., MishraS. K.. Structural stability of manganese oxides[J]. Physical Review B, 1999, 59: 6120-6130

[11]

VanderbiltD.. Soft self-consistent pseudopotentials in generalized eigenvalue formalism[J]. Physical Review B, 1990, 41: 7892-7895

[12]

MattssonA. E., SchultzP. A., DesjarlaisM. P., et al.. Designing meaningful density functional theory calculations in materials science—a primer[J]. Modeling and Simulation in Materials Science and Engineering, 2005, 13: 1-31

[13]

MonkhorstH. J., PackJ. D.. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13: 5188-5192

[14]

LiuW., KowalK., FarringtonG. C.. Electrochemical characteristics of spinel phase LiMn2O4-based cathode materials prepared by the Pechini process[J]. Journal of the Electrochemical Society, 1996, 143(11): 3590-3596

[15]

StrobelP., PalosA. I., AnneM., et al.. Structural, magnetic and lithium insertion properties of spinel-type Li2Mn3MO8 oxides (M∼Mg, Co, Ni, Cu)[J]. Journal of Materials Chemistry, 2000, 10: 429-436

[16]

WolvertonC.. First-principles prediction of vacancy order disorder and intercalation battery voltages LixCoO2[J]. Physical Review Letters, 1998, 81(3): 606-609

[17]

HuangY.-d., LiJ., JiaD.-zeng.. Preparation and characterization of LiMn2−yCoyO4 spinel by low heating solid state coordination method[J]. Journal of Colloid and Interface Science, 2005, 286: 263-267

[18]

BaderR. W.An Introduction to the Electronic Structure of Atoms and Molecules[M], 1980, Oxford, Oxford Press

AI Summary AI Mindmap
PDF

245

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/