Bio-decomposition of rock phosphate containing pyrites by Acidithiobacillus ferrooxidans

Ru-an Chi , Chun-qiao Xiao , Xiao-hui Huang , Cun-wen Wang , Yuan-xin Wu

Journal of Central South University ›› 2007, Vol. 14 ›› Issue (2) : 170 -175.

PDF
Journal of Central South University ›› 2007, Vol. 14 ›› Issue (2) : 170 -175. DOI: 10.1007/s11771-007-0034-z
Article

Bio-decomposition of rock phosphate containing pyrites by Acidithiobacillus ferrooxidans

Author information +
History +
PDF

Abstract

Leaching soluble phosphorus from rock phosphate containing pyrites by Acidithiobacillus ferrooxidans (A. f.) is feasible, and the reaction mechanism is as follows. Pyrites are oxidized by A. f. to produce H2SO4 and FeSO4; the rock phosphate is decomposed by H2SO4, forming soluble phosphorus compounds; and Fe2+ from FeSO4 is oxidized to Fe3+, providing energy for the growth of A. f.. In this process, as H2SO4 is produced in the reaction, an acidic condition in the culture medium is formed, which benefits the growth of A. f. and aids both continuous oxidation of pyrites and leaching of soluble phosphorus from rock phosphate. The fraction of phosphorous leached can reach the largest in the presence of 1.0 g/L Fe3+, 200 mg/L Mg2+ and 400 mg/L NH4+. The optimal technological parameters on the fraction of phosphorous leached are as follows: the volume fraction of inocula of A. f., the mass ratio of pyrites to rock phosphate and the pH value are in ranges of 5%–25%, 3:1–5:1 and 1.8–2.2, respectively.

Keywords

bio-decomposition / rock phosphate / pyrites / Acidithiobacillus ferrooxidans

Cite this article

Download citation ▾
Ru-an Chi, Chun-qiao Xiao, Xiao-hui Huang, Cun-wen Wang, Yuan-xin Wu. Bio-decomposition of rock phosphate containing pyrites by Acidithiobacillus ferrooxidans. Journal of Central South University, 2007, 14(2): 170-175 DOI:10.1007/s11771-007-0034-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HalderA. K., MishraA. K., BhattacharyyaP., et al.. Solubilization of rock phosphate by Rhizobium and Bradyrhizobium[J]. Gen Appl Microbiol, 1990, 36: 81-92

[2]

JanaB. B., SahuS. N.. Effect of frequency of rock phosphate application in carp culture[J]. Aquaculture, 1994, 122: 313-321

[3]

JanaB. B., SahuS. N.. Relative performance of three bottom grazing fishes (Cyprinus carpio, Cirrhinus mrigala, Heteropneustes fossilis) in increasing the fertilizer value of phosphate rock[J]. Aquaculture, 1993, 115: 19-29

[4]

TangY., GuiB. W., LiuQ.. Experimental study on bacterial transformation[J]. Non-Ferrous Mining and Metallurgy, 2000, 16(6): 23-28

[5]

LouwH. A., WeblyD. M.. A study of soil bacteria dissolving bacteria, certain mineral phosphate fertilizers and related compounds[J]. Appl Bacteriol, 1959, 22: 227-233

[6]

AgnihotriV. P.. Solubilization of insoluble phosphates by some soil fungi isolated from nursery seed beds[J]. Can Microbiol, 1970, 16: 877-880

[7]

RoychoudhuryP., KaushikB. D.. Solubilization of Mussoorie rock phosphate by cyanobacteria[J]. Curr Sci, 1989, 58: 569-570

[8]

ChiR.-a., XiaoC.-q., GaoH., et al.. Biodecomposition of low-grade rock phosphate with some bacteria and fungi[J]. The Chinese Journal of Process Engineering, 2005, 5(6): 636-639

[9]

BoseckerK.. Biotransformation: metal solubilization by microorganisms[J]. FEMS Microbiology Reviews, 1997, 20: 591-604

[10]

GoldsteinA. H.. Bacterial solubilization of mineral phosphates: historical perspective and future prospects[J]. Am Altern Agri, 1986, 1: 51-57

[11]

LeyvalC., BerthelinJ.. Interaction between Laccaria laccata, Agrobacterium radiobacter and beech roots: influence on P, K, Mg and Fe movilization from minerals and plant growth[J]. Plant Soil, 1989, 117: 103-110

[12]

SalihH. M., YahyaA. Y., Abdul-RahemA. M., MunamB. H.. Availability of phosphorus in a calcareus soil treated with rock phosphate or superphosphate as affected by phosphate dissolving fungi[J]. Plant Soil, 1989, 120: 181-185

[13]

ZhangY. K., WangA., ChenM. C.. Fundamental research on the dissolution of phosphate rock by microorganisms[J]. Multipurpose Utilization of Mineral Resource, 2000, 12(6): 32-34

[14]

LiuJ. S., XieX. H., LiB. M., et al.. Adsorption characteristics of thiobacillus ferrooxidans on surface of sulfide minerals[J]. Journal of Central South University of Technology, 2005, 12(6): 671-676

[15]

ChiR. A., XiaoC. Q., GaoH.. Bioleaching of phosphorus from rock phosphate containing pyrites by Acidithiobacillus ferrooxidans[J]. Minerals Engineering, 2005, 6: 23-24

[16]

SilverM.. Oxidation of elemental sulphur and sulphur compounds and CO2 fixation by Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans)[J]. Can J Microbiol, 1970, 16: 845-849

[17]

MalhotraS., TankhiwaleA. S., RajvaidyaA. S., et al.. Optimal conditions for bio-oxidation of ferrous ions to ferric ions using Thiobacillus ferrooxidans[J]. Bioresource Technology, 2002, 85: 225-234

[18]

LazaroffN., SigalW., WassermanA.. Iron oxidation and precipitation of ferric hydroxysulfates by resting thiobacillus ferrooxidans cells[J]. Appl Environ Microbiol, 1982, 43: 924-938

[19]

LiH., ZhangX.. Examination of the content of ferrum in stibium by phenanthroline method[J]. Liaoning Chemistry, 2004, 32(2): 6-9

[20]

SilvermanM. P., LundgrenD. G.. Studies on the chemoautotrophic iron bacterium thiobacillus ferrooxidans[J]. J Bacteriol, 1959, 77: 642-647

[21]

BrierlyJ. A., NorrisP. R., KellyD. P., et al.. Characteristics of a moderately thermophillic and acidophillic iron oxidising thiobacillus[J]. Eur Appl Microbiol Biotechno, 1978, 5: 291-299

[22]

KellyD. P., JonesC. A.SachemF. D.. Bio-oxidation of ferrous ions to ferric ions using Thiobacillus ferrooxidans[C]//. Metallurgical Application of Bacterial Transformation and Related Microbiological Phenomena, 1978, Princeton, Academic Press: 19-44

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/