Electrochemical behavior of diverse vanadium ions at modified graphite felt electrode in sulphuric solution

Xiao-gang Li , Ke-long Huang , Su-qin Liu , Li-quan Chen

Journal of Central South University ›› 2007, Vol. 14 ›› Issue (1) : 51 -56.

PDF
Journal of Central South University ›› 2007, Vol. 14 ›› Issue (1) : 51 -56. DOI: 10.1007/s11771-007-0011-6
Article

Electrochemical behavior of diverse vanadium ions at modified graphite felt electrode in sulphuric solution

Author information +
History +
PDF

Abstract

PAN-based graphite felt (PGF) treated in 98% sulphuric acid for 5 h and then kept at 450 °C for 2 h was evaluated for their electrochemical performance as electrodes of vanadium redox battery (VRB). Structure and characteristic of treated PAN-based graphite felt (TPGF) were determined by means of Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Brunauer-Emmett-Teller surface area analysis and VRB test system. The results show that the acid and heat synergistic effect increase the number of —COOH functional groups on the PGF surface, and the PGF is eroded by sulphuric acid oxidation, resulting in the surface area increases from 0.31 m2/g to 0.45 m2/g. The V(II)/V(III) redox reaction is electrochemically reversible on the TPGF electrode, while the V(IV)/V(V) couple is a quasi reversible process. The diffusion coefficients of the oxidation for V(IV)/V(V) obtained from the scope of peak current Ip vs scan rate v1/2 is 4.4×10−5 cm2/s. The improvement of electrochemical activity for the electrode is mainly ascribed to the increase of the number of —COOH groups on the TPGF, which behaves as active sites catalyzing the vanadium species reactions and accelerating electron transfer reaction and oxygen transfer.

Keywords

vanadium / redox flow battery / graphite felt / diffusion coefficient

Cite this article

Download citation ▾
Xiao-gang Li, Ke-long Huang, Su-qin Liu, Li-quan Chen. Electrochemical behavior of diverse vanadium ions at modified graphite felt electrode in sulphuric solution. Journal of Central South University, 2007, 14(1): 51-56 DOI:10.1007/s11771-007-0011-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Skyllas-KazacosM., RychcikM., RobinsR., et al.. New all-vanadium redox cell[J]. J Electrochem Soc, 1986, 133(5): 1057-1058

[2]

SumeE., Skyllas-KazacosM.. A study of the V(II)/V(III) redox couple for redox flow cell applications[J]. Journal of Power Sources, 1985, 15(2/3): 179-190

[3]

SumE., RychcikM., Skyllas-KazacosM.. Investigation of the V(V)/V(IV) system for use in the positive half-cell of a reodx battery[J]. Journal of Power Sources, 1985, 16(1): 85-95

[4]

FabjanC., GacheJ., HarrerB.. The vanadium redox-battery: an efficient storage unit for photovoltaic systems[J]. Electrochimica Acta, 2001, 47(5): 825-831

[5]

JoerissenL., GarcheJ., FabjanC.. Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems[J]. Journal of Power Sources, 2004, 127(1/2): 98-104

[6]

RychcikM., Skyllas-KazaocsM.. Evaluation of electrode materials for all-vanadium redox flow cell[J]. Journal of Power Sources, 1987, 19(1): 45-54

[7]

SunB. T., Skyllas-KazacosM.. Modification of graphite electrode materials for vanadium redox flow cell applications—thermal treatment[J]. Electrochimca Acta, 1992, 37(7): 1253-1269

[8]

Haddadi-AslV., KazacosM., Skyllas-KazacosM.. Conductive carbon-polypropylene composite electrodes for vanadium redox flow battery[J]. J Appl Electrochem, 1995, 25(1): 29-33

[9]

RychcikM., Skyllas-KazacosM.. Evaluation of electrode materials for all-vanadium redox flow cell[J]. Journal of Power Sources, 1987, 19(1): 45-54

[10]

HuangK.-l., WuQ.-m., LiuS.-qin.. Performance of graphite power-carbon black composite electrodes for the vanadium redox flow battery[J]. Chinese Journal of Power Source, 2004, 28(2): 91-93

[11]

LiX.-g., HuangK.-l., LiuS.-qin.. Properties of the current collector of all vanadium redox flow battery[J]. Battery Bimonthly, 2005, 35(2): 93-94

[12]

WuQ.-m., HuangK.-l., LiuS.-q., et al.. Study of PAN-graphite felt electrode in the vanadium redox flow battery[J]. Chinese Journal of Power Source, 2005, 29(7): 456-458

[13]

RyuY. G., PyunS. I., KimC. S., et al.. A study on the formation of surface functional groups during oxygen reduction on a platinum-dispersed carbon electrode in an 85% H3PO4 solution at elevated temperature[J]. Carbon, 1998, 36(3): 293-298

[14]

HuangK.-l., TanN., LiuS.-q., et al.. Reaction mechanism of V(IV)/V(V) redox couple at graphite felt electrode[J]. The Chinese Journal of Nonferrous Metals, 2006, 14(5): 871-876

[15]

LiX., HoritaK.. Electrochemical characterization of carbon black subjected to RF oxygen plasma[J]. Carbon, 2000, 38(1): 133-138

[16]

SantiagoM., FortunyA., FabregatA., et al.. Modified activated carbons for catalytic wet air oxidation of phenol[J]. Carbon, 2005, 43(1): 2134-2145

[17]

JurewiczK., BabelK., LkowshiA., et al.. Ammoxidation of active carbons for improvement of supercapacitor characteristics[J]. Electrochimica Acta, 2003, 48(11): 1491-1498

[18]

JacobsonN. S., CurryD. M.. Oxidation microstructure studies of reinforced carbon/carbon[J]. Carbon, 2006, 44(7): 1142-1150

[19]

BardA. J., FaulknerL. R.Electrochemical Methods Fundamentals and Applications [M], 20012nd ed.New York, John Wiley & Sons

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/