Contact pressure distribution and support angle optimization of kiln tyre

You-gang Xiao , Di-fu Pan , Xian-ming Lei

Journal of Central South University ›› 2006, Vol. 13 ›› Issue (3) : 246 -250.

PDF
Journal of Central South University ›› 2006, Vol. 13 ›› Issue (3) : 246 -250. DOI: 10.1007/s11771-006-0140-3
Article

Contact pressure distribution and support angle optimization of kiln tyre

Author information +
History +
PDF

Abstract

According to the shearing force character and the deformation coordination condition of shell at the station of supports, the mathematical models to calculate contact angle and contact pressure distribution between tyre and shell were set up, the formulae of bending moment and bending stress of tyre were obtained. Taking the maximum of tyre fatigue life as the optimal objective, the optimization model of tyre support angle was built. The computational results show that when tyre support angle is 30°, tyre life is far less than that when tyre support angle is optimal, which is 35.6°, and it is unsuitable to stipulate tyre support angle to be 30° in traditional design. The larger the load, the less the nominal stress amplitude increment of tyre, the more favorable the tyre fatigue life when tyre support angle is optimal.

Keywords

tyre / contact pressure / support angle / optimization

Cite this article

Download citation ▾
You-gang Xiao, Di-fu Pan, Xian-ming Lei. Contact pressure distribution and support angle optimization of kiln tyre. Journal of Central South University, 2006, 13(3): 246-250 DOI:10.1007/s11771-006-0140-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AlanE, SaxerB. Causes and effects of kiln tyre problems[J]. IEEE Transactions on Industry Applications, 1985, 21(2): 344-355

[2]

ZhouXian, LiuYi-Lun, ZhaoXian-Qiong, et al.. Mechanical model and contact stress emulational analysis of rotary kiln’s tyre[J]. Journal of Central South University of Technology: Natural Science, 2002, 33(5): 526-529(in Chinese)

[3]

ChenRen-shan. The stress distribution of kiln tyre and shell[J]. Journal of Wuhan University of Technology, 1993, 15(3): 78-83(in Chinese)

[4]

PiotrN, PiotrM. Kiln degradation control by design and operation measures[J]. Journal of Performance of Constructed Facilities, 1990, 4(1): 2-20

[5]

GerhardK. Modern Kiln technology from krupp polysius[J]. Technische Mitteilungen Krupp: English Edition, 1995, 31(4): 17-24

[6]

HeydenrychM DModeling of Rotary kilns [D], 2001, Netherlands, Department of Chemical Engineering, University of Twente

[7]

Del CozJ J, RodriguezM F, GarciaP J, et al.. Design and finite element analysis of a wet cycle cement rotary kiln [J]. Finite Elements in Analysis and Design, 2002, 39(1): 17-42

[8]

GocerC. The stresses in rotary kiln tyres[J]. ZKG International, 1999, 52(2): 80-84

[9]

YangShi-ru. Calculating the deformations and the internal forces of the ring and the wheel rim[J]. Journal of Chengdu University: Natural Science, 1995, 14(2): 16-21(in Chinese)

[10]

BaginskayaS, DavydovE. Fredholm equations of the first kind[J]. Computational Mathematics and Modeling, 1997, 8(3): 226-230

[11]

XiaoYong-gangMechanical property research of rotary kiln contact system with multi-supports and parameters optimization [D], 2004, Changsha, School of Mechanical and Electrical Engineering, Central South University(in Chinese)

[12]

ZhaoShao-bianAnti-fatigue design[M], 1994, Beijing, Mechanical Industry Press(in Chinese)

[13]

TuchiyaY, NakajimaE, TakenouchiH. Lining service life and kiln ovality[J]. World Cement, 1996, 27(4): 28-31

[14]

ShubinV I. Mechanical effects on the lining of rotary cement kilns[J]. Refractories, 2001, 42(6): 245-250(in Chinese)

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/