Optimizing pyrolysis of resin carbon for anode of lithium ion batteries
Hua-jun Guo , Xin-hai Li , Xin-ming Zhang , Zhi-xing Wang , Wen-jie Peng , Bao Zhang
Journal of Central South University ›› 2006, Vol. 13 ›› Issue (1) : 58 -62.
Optimizing pyrolysis of resin carbon for anode of lithium ion batteries
Pyrolytic resin carbon anode for lithoum ion batteries was prepared from thermosetting phenolic resin. Pyrolysis of the primary phenolic resin and the dewatered one was studied by thermal gravimetric analysis. Structures and characteristics of the carbon materials were determined by X-ray diffraction, Brunauer-Emmer-Teller surface area analysis and electrochemical measurements. With the increase of pyrolyzing temperature and soaking time, the resin carbon material has larger crystallite sizes of Lc and La, lower specific surface area, smaller irreversible capacity and higher initial coulombic efficiency. The pyrolyzing temperature and soaking time are optimized to be 1 050 °C and 2 h. The resin carbon anode obtained under the optimum conditions shows good electrochemical performances with reversible capacity of 387 mA · h/g and initial coulombic efficiency of 69.1%.
lithium ion battery / carbon / phenolic resin / anode
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
/
| 〈 |
|
〉 |