Selective image enhancement method for low energy target information area

Li Zhu , Ji-feng Chen , Chen Qin , Ming Zeng

Journal of Central South University ›› 2006, Vol. 13 ›› Issue (5) : 563 -567.

PDF
Journal of Central South University ›› 2006, Vol. 13 ›› Issue (5) : 563 -567. DOI: 10.1007/s11771-006-0088-3
Article

Selective image enhancement method for low energy target information area

Author information +
History +
PDF

Abstract

A selective subband enhancement method based on biorthogonal wavelet base is proposed. This novel image enhancement method is just for those images in which the energy of target information area is relatively lower. It includes two parts: one is enhancing the low frequency subband by wavelet decomposition and the other is building a new criterion based on entropy window to image evaluation. Experimental results show that this new scheme may result in a perfect image processing.

Keywords

wavelet transform / biorthogonal wavelet base / selective subband enhancement / entropy window / low frequency subband

Cite this article

Download citation ▾
Li Zhu, Ji-feng Chen, Chen Qin, Ming Zeng. Selective image enhancement method for low energy target information area. Journal of Central South University, 2006, 13(5): 563-567 DOI:10.1007/s11771-006-0088-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HayitG, CharlesH, AndersonS A. Enhancement by Nonlinear extrapolation in frequency space[J]. IEEE Transactions on Image Processing, 2000, 9(6): 1035-1048

[2]

StarckJ L, MurtaghF, CandèsE J, et al.. Gray and color image contrast enhancement by the wavvelet transform[J]. IEEE Transactions on Image Processing, 2003, 12(6): 706-717

[3]

StephaneM, HwangW L. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory, 1992, 38(2): 617-643

[4]

StephaneM. Zero-crossings of a wavelet transform[J]. IEEE Transactions on Information Theory, 1991, 37(4): 1019-1033

[5]

StephaneM, ZhongS. Characterisation of signals from multiscale edges[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(7): 710-732

[6]

StephaneMA wavelet tour of signal processing[M], 1999, San Diego, Academic Press

[7]

CohenA, DaubechiesI, FeauveauI. Biorthogonal bases of compacty supported wavelets[J]. Communication Pure and Appl Math, 1992, 38(2): 285-560

[8]

MichaelG S. Optimal biorthogonal wavelet decomposition of wire-frame meshes box splines, and its application to the hierarchical coding of 3-D surfaces[J]. IEEE Transactions on Image Processing, 1999, 8(1): 41-58

[9]

ShensaM J. The discrete wavelet transform: wedding the atrous and mallat algorithm[J]. IEEE Transactions on Signal Processing, 1992, 40(12): 2464-2482

[10]

RioulO, DuhamelP. Fast algorithms for discrete and continuous wavelet transforms[J]. IEEE Transactions on Information Theory, 1992, 38(2): 569-586

[11]

GordonR, RangayyanR M. Feature enhancement of film mammograms using fixed and adaptive neighborhoods[J]. Applied Optics, 1984, 23(4): 560-564

[12]

MaShe-xiang, LiuGui-zhong, ShangZhao-wei. Image and video coding based on wavelet transform[J]. Journal of Engineering Mathematics, 2001, 18(5): 19-32(in Chinese)

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/