Design of decentralized robust {ie558-1} state feedback controllerstate feedback controller

Yong-fang Xie , Wei-hua Gui , Zhao-hui Jiang , Chun-hua Yang

Journal of Central South University ›› 2006, Vol. 13 ›› Issue (5) : 558 -562.

PDF
Journal of Central South University ›› 2006, Vol. 13 ›› Issue (5) : 558 -562. DOI: 10.1007/s11771-006-0087-4
Article

Design of decentralized robust {ie558-1} state feedback controllerstate feedback controller

Author information +
History +
PDF

Abstract

The design of decentralized robust {ie558-2} state feedback controller for large-scale interconnected systems with value bounded uncertainties existing in the state, control input and interconnected matrices was investigated. Based on the bounded real lemma a sufficient condition for the existence of a decentralized robust {ie558-3} state feedback controller was derived. This condition is expressed as the feasibility problem of a certain nonlinear matrix inequality. The controller, which makes the closed-loop large-scale system robust stable and satisfies the given {ie558-4} performance, is obtained by the offered homotopy iterative linear matrix inequality method. A numerical example is given to demonstrate the effectiveness of the proposed method.

Keywords

value bounded uncertainty / decentralized control / robust {ie558-5} control / nonlinear matrix inequality / homotopy iterative method

Cite this article

Download citation ▾
Yong-fang Xie, Wei-hua Gui, Zhao-hui Jiang, Chun-hua Yang. Design of decentralized robust {ie558-1} state feedback controllerstate feedback controller. Journal of Central South University, 2006, 13(5): 558-562 DOI:10.1007/s11771-006-0087-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

JamshidiMLarge scale systems, modeling and control[M], 1983, Amsterdam, Elsevier Science Publishing Co Inc

[2]

ScorlettiC, DucG. An LMI approach to decentralized {ie561-1} control [J]. International Journal of Control, 2001, 74(3): 211-224

[3]

CaoYong-yan, SunYou-xian, MaoWei-jie. Output feedback decentralized stabilization: ILMI approach[J]. Systems & Control Letters, 1998, 35(3): 183-194

[4]

WANG You-yi, XIE Li-hua, Souza C E D. Robust decentralized control of interconnected uncertain linear systems[C]// Proceedings of the 34th IEEE Conference on Decision and Control. New Orleans, 1995: 2653–2658.

[5]

HuangShou-dong, LamJ, YangGuang-hong, et al.. Fault tolerant decentralized {ie562-1} control for symmetric systems[J]. IEEE Transaction on Automatic Control, 1999, 44(11): 2108-2114

[6]

SeoJ H, JoH, LeeS H. Decentralized {ie562-2} control design[J]. Automatica, 1999, 35(8): 865-876

[7]

ChengChu-wang. Decentralized robust {ie562-3} control for uncertain delay large-scale systems [J]. Acta Automatica Sinica, 2001, 27(3): 361-366(in Chinese)

[8]

MehdiD, HamidM A, PerrinF. Robustness and optimality of linear quadratic controller for uncertain systems[J]. Automatica, 1996, 32(7): 1081-1083

[9]

LiuXin-yu, GaoLi-qun, ZhangWei-li. Decentralized robust control for linear uncertain interconnected systems[J]. Information and Control, 1998, 27(5): 342-350(in Chinese)

[10]

WoSong-lin, ZouYun. Decentralized robust stabilization for singular large scale systems with parameter uncertainty[J]. Control and Decision, 2004, 19(8): 931-934(in Chinese)

[11]

GuiWei-hua, XieYong-fang, WuMin, et al.. Decentralized robust control for uncertain interconnected system with time-delay based on LMI approach[J]. Acta Automatica Sinica, 2002, 28(1): 155-159(in Chinese)

[12]

SunJi-tao, DengFei-qi, LiuYong-qing. Decentralized fault-tolerant robust control for uncertain interconnected systems with time-varying delays[J]. Control and Decision, 2001, 16(6): 968-970(in Chinese)

[13]

BoydS P, ChaouL E, FeronE, et al.Linear matrix inequalities in systems and control theory[M], 1994, Philadelphia, SIAM

[14]

IwasakiT, SkeltonR E. All controllers for the general {ie562-4} control problem: LMI existence conditions and state space formulas[J]. Automatica, 1994, 30(8): 1307-1317

[15]

WangYun, BernsteinD S, WatsonL T. Probability-one homotopy algorithms for solving the coupled Lyapunov equations arising in reduced-order H2/{ie562-5} modeling, estimation, and control[J]. Applied Mathematics and Computation, 2001, 123(2): 155-185

[16]

IkedaM, ZhaiG, FujisakiY. Decentralized {ie562-6} controller design for large scale systems: a matrix inequality approach using homotopy method[J]. Automatica, 2001, 37(4): 565-573

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/