Note on filon-type integration for higher order exponential time differencing methods in stiff systems

Shu-huang Xiang

Journal of Central South University ›› 2005, Vol. 12 ›› Issue (Suppl 1) : 298 -303.

PDF
Journal of Central South University ›› 2005, Vol. 12 ›› Issue (Suppl 1) : 298 -303. DOI: 10.1007/s11771-005-0417-y
Mathematics

Note on filon-type integration for higher order exponential time differencing methods in stiff systems

Author information +
History +
PDF

Abstract

The Filon-type quadrature is efficient for highly oscillatory functions — Fourier transforms. Based on Cox and Matthews’ ETD schemes, the higher order single step exponential time differencing schemes are presented based on the Filon-type integration and the A-stability of the two-order Adams-Bashforth exponential time differencing scheme is considered. The effectiveness and accuracy of the schemes is tested.

Keywords

exponential time differencing method / stiff system / Filon method / Runge-Kutta method

Cite this article

Download citation ▾
Shu-huang Xiang. Note on filon-type integration for higher order exponential time differencing methods in stiff systems. Journal of Central South University, 2005, 12(Suppl 1): 298-303 DOI:10.1007/s11771-005-0417-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BeylkinG, KeiserJ M. On the adaptive numerical solution of nonlinear partial differential equations in wavelet bases[J]. J Comput Phys, 1997, 132: 233-259

[2]

BeylkinG, KeiserJ M, VozovoiL. A new class of time discretization schemes for the solution of nonlinear PDES[J]. J Comput Phys, 1998, 147: 362-387

[3]

CoxS M, MatthewsP C. Exponential time differencing for stiff systems[J]. J Comput Phys, 1997, 132: 430-455

[4]

HollandR. Finite-difference time-domain (FDTD) analysis of magnetic diffusion[J]. IEEE Trans Electromagn Compat, 1994, 36: 32-39

[5]

PetropoulosP G. Analysis of exponential time-differencing for FDTD in lossy di-electrics[J]. IEEE Trans Antennas Propagation, 1997, 45: 1054-1057

[6]

SchusterC, ChristA, FichtnerW. Review of FDTD time-stepping for efficient simulation of electric conductive media[J]. Microwave Opticalogy Technology Letter, 2000, 25: 16-21

[7]

FilonL N G. On a quadrature formula for trigonometric integrals[J]. Proc Royal SocEdinburgh, 1928, 49: 38-47

[8]

IserlesA. On the numerical quadrature of highly-oscillating integrals I: Fourier transforms[J]. IMA J Num Anal, 2004, 24: 365-391

[9]

IserlesA. On the numerical quadrature of highly-oscillating integrals II: Irregularoscillators[J]. IMA J Num Anal, 2005, 25: 25-44

[10]

NörsettS P. An A-stable modification of the Adams-Bashforth methods[J]. Lecture Notes in Mathematics, 1969, 109: 214-219

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/