Solvability conditions for algebra inverse eigenvalue problem over set of anti-Hermitian generalized anti-Hamiltonian matrices

Zhong-zhi Zhang , Xu-li Han

Journal of Central South University ›› 2005, Vol. 12 ›› Issue (Suppl 1) : 294 -297.

PDF
Journal of Central South University ›› 2005, Vol. 12 ›› Issue (Suppl 1) : 294 -297. DOI: 10.1007/s11771-005-0416-z
Mathematics

Solvability conditions for algebra inverse eigenvalue problem over set of anti-Hermitian generalized anti-Hamiltonian matrices

Author information +
History +
PDF

Abstract

By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n×n complex matrix under spectral restriction.

Keywords

anti-Hermitian generalized anti-Hamiltonian matrix / algebra inverse eigenvalue problem / optimal approximation

Cite this article

Download citation ▾
Zhong-zhi Zhang, Xu-li Han. Solvability conditions for algebra inverse eigenvalue problem over set of anti-Hermitian generalized anti-Hamiltonian matrices. Journal of Central South University, 2005, 12(Suppl 1): 294-297 DOI:10.1007/s11771-005-0416-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiN. A matrix inverse eigenvalue problem and its application [J]. Linear Algebra and its Application, 1997, 266: 143-152

[2]

LiN, ChuK W E. Designing Hopfield neural network via pole assignment[J]. International Journal of Systems Science, 1994, 25: 669-681

[3]

JosephK T. Inverse eigenvalue problem in structural design[J]. AIAA J, 1992, 10: 2890-2896

[4]

BaruchM. Optimization procedure to correct stiffness and flexibility matrices using vibration tests[J]. AIAA J, 1978, 16(11): 1208-1210

[5]

BermanA, NagyE J. Improvement of a large analytical model using test data[J]. AIAA J, 1983, 21(8): 1168-1173

[6]

BorgesC F, FrezzaR, GraggW B. Some inverse eigenproblems for Jacobi and Arrow matrices [J]. NumerLinear Algebra Appl, 1995, 2: 195-203

[7]

WoodgateK G. Least-squares solution of over positive semi-definite symmetric P[J]. Linear Algebra Appl, 1996, 245: 171-190

[8]

XieDong-xiu. Least-squares solution for inverse eigenpair problem of nonnegative definite matrices[J]. Computers and Mathematics with Applications, 2000, 40: 1241-1251

[9]

XieDong-xiu, ZhangLei, XuXi-yan. The solvability conditions for the inverse problem of bisymmetric nonnegative definite matrices [J]. J Comput Math, 2000, 18(6): 597-608

[10]

XieDong-xiu, ZhangLei. Least-squares solutions of inverse problems for anti-symmetric matrices[J]. Journal of Engineering Mathematic, 1993, 10(4): 25-34(in Chinese)

[11]

Ben-IsraelA, GrevilleT N EGeneralized Inverse: Theory and Applications [M], 1974, New York, John Wiley Sons

[12]

Cheng E W. Introduction to Approximation Theory [M]. Mc Graw-Hill Book Col, 1966.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/