Positive periodic solutions of higher-dimensional nonlinear functional difference equations

Bin-xiang Dai , Jie-zhong Zou , Na Zhang

Journal of Central South University ›› 2005, Vol. 12 ›› Issue (Suppl 1) : 274 -277.

PDF
Journal of Central South University ›› 2005, Vol. 12 ›› Issue (Suppl 1) :274 -277. DOI: 10.1007/s11771-005-0413-2
Mathematics

Positive periodic solutions of higher-dimensional nonlinear functional difference equations

Author information +
History +
PDF

Abstract

In this paper, we apply a cone theoretic fixed point theorem to obtain sufficient conditions for the existence of multiple positive periodic solutions to the higher-dimensional functional difference equations of the form:

\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$x(n + 1) = A(n)x(n) + \lambda h(n) f(x(n - \tau (n)),n \in Z$$\end{document}
.

Keywords

positive periodic solution / difference equations / cone / fixed point theorem

Cite this article

Download citation ▾
Bin-xiang Dai, Jie-zhong Zou, Na Zhang. Positive periodic solutions of higher-dimensional nonlinear functional difference equations. Journal of Central South University, 2005, 12(Suppl 1): 274-277 DOI:10.1007/s11771-005-0413-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Raffoul Y H. Positive periodic solutions of nonlinear functional difference equations [J]. E J Differential E-quations, 2002(55): 1–8.

[2]

LiYong-kun, ZhuLi-fei, LiuPing. Positive periodic solutions of nonlinear functional difference equations depending on a parameter [J]. Comput Math Appl, 2004, 48: 1453-1459

[3]

ZhuLi-fei, LiYong-kun. Positive periodic solutions of higher-dimensional functional difference equations with a parameter [J]. J Math Anal Appl, 2004, 290: 654-664

[4]

GaoYing, ZhangGuang, GeWei-gao. Existence of periodic positive solutions for delay difference equations [J]. J Sys Sci and Math Scis, 2003, 23(2): 155-162(in Chinese)

[5]

AgarwalP R, ZhangW N. Periodic solutions of difference equations with general periodicity [J]. Comput Math Applic, 2001, 42(3–5): 719-727

[6]

AgarwalP R, WongP J Y. On the existence of positive solutions of higher order difference equations [J]. Topoloical Method in Nonlinear Analysis, 1997, 10(2): 339-351

[7]

EloeP W, RaffoulY H, ReidD, et al.. Positive solutions of nonlinear functional difference equations [J]. Comput Math Applic, 2001, 42(3–5): 639-646

[8]

FanM, WangK. Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system [J]. Math Compu Model, 2002, 35: 951-961

[9]

ZhengX Y, ShiB, GaiM J. A discrete periodic Lotka-Volterra system with delays [J]. Comput Math Applic, 2004, 47: 491-500

[10]

WangH Y. Positive periodic solutions of functional differential equations [J]. J Differential Equations, 2004, 202: 354-366

[11]

GuoD, LakshmikanthamVNonlinear problems in abstract cones [M], 1988, Orlando, Academic Press

[12]

KrasnoselskiiMPositive solutions of operator equations [M], 1964, Noordhoff, Groningen

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/