Preparation of ultrafine Ti(C, N)-based cermet using oxygen-rich powders

Ping Feng , Yue-hui He , Wei-hao Xiong , Yi-feng Xiao

Journal of Central South University ›› 2005, Vol. 12 ›› Issue (Suppl 1) : 39 -43.

PDF
Journal of Central South University ›› 2005, Vol. 12 ›› Issue (Suppl 1) : 39 -43. DOI: 10.1007/s11771-005-0368-3
Materials Science and Engineering

Preparation of ultrafine Ti(C, N)-based cermet using oxygen-rich powders

Author information +
History +
PDF

Abstract

The availability using oxygen-rich powders to prepare ultrafine Ti(C,N)-based cermets was investigated. The deoxidation process, denitrification phenomenon and the effect of deoxidation on microstructure and mechanical properties of sintered samples were discussed, respectively. The results show that oxygen in the samples prepared even with high oxygen contained in starting powders can be almost completely cleaned away through suitable sintering process. The ultrafine oxygen-rich powders have a significant effect on microstructure, which promotes the formation of white core phase. A ultrafine Ti(C,N)-based cermet with mean particle size of 0.30 µm, uniform microstructure and excellent mechanical properties is successfully prepared. It is also found that there exists severe denitrification phenomenon in the preparation process of ultrafine Ti(C,N)-based cermet.

Keywords

Ti(C,N)-based cermet / ultrafine structured grain / solid-state sintering / deoxidation / microstructure / mechanical property

Cite this article

Download citation ▾
Ping Feng, Yue-hui He, Wei-hao Xiong, Yi-feng Xiao. Preparation of ultrafine Ti(C, N)-based cermet using oxygen-rich powders. Journal of Central South University, 2005, 12(Suppl 1): 39-43 DOI:10.1007/s11771-005-0368-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

EhiraM, EgamiA. Mchanaicl properties and mictro-structures of submicron cermets [J]. Int J of Refractory Metals and Hard Materials, 1995, 13(5): 313-319

[2]

JeonE T, JoardarJ, KangS. Microstructure and tribo-mechanical properties of ultrafine Ti(CN) cermets [J]. Int J Refractory Metals and Hard Materials, 2002, 20(3): 207-211

[3]

XiongJ, ZhengY K, ShenB L, et al.. The preparation and performance of superfine TiCN cermet [J]. Powder Metallurgy Technology, 2003, 21(2): 92-95(in Chinese)

[4]

GuoJ K, FengC D. The recent progress on nanoceramics [J]. Chinese Journal of Materials Research, 1995, 95(5): 412-419(in Chinese)

[5]

GilleG, SzesnyB, DreyerK, et al.. Submicron and ultrafine grained hardmetals for microdrills and metal cutting inserts [J]. Int J Refractory Metals and Hard Materials, 2002, 20(1): 3-22

[6]

EttmayerP, KolaskaH, LengauerW, et al.. Ti(C, N)-metallurgy and properties [J]. Int J Refractory Metals and Hard Materials, 1995, 13(6): 343-351

[7]

ChenL, LengauerW, EttmayerP, et al.. Fundamentals of liquid sintering for modern cermets and functionally graded cemented carbonitrides (FGCC) [J]. Int J Refractory Metals and Hard Materials, 2000, 18(2): 307-322

[8]

YoshimuraH, SugizawaT, NishigakiK, et al.. Reaction occurring during sintering and the characteristics of TiC-20TiN-15WC-10TaC-9Mo-5, 5Ni-11Co cermet [J]. Int J Refractory Metals and Hard Materials, 1983, 2(4): 170-174

[9]

EttmayerP, KolaskaH, DreyerK. Effect of sintering atmosphere on the properties of cermets [J]. Powder Metall Int, 1991, 23(4): 224-229

[10]

Dong-IlC, Doh-YeonK. Microstructural evolution during the sintering of TiC-Mo-Ni cermets[J]. J Am Ceram Soc, 1993, 76(8): 2049-2052

[11]

MoskowitzD, TernerL L. Cemented titanium carbonitrides: effects of temperature and carbon-tonitrogen ratio[J]. Mater Sci Eng A, 1988, A105–106: 256-260

[12]

QianM. On the disappearance of Mo2C during low-temperature sintering of Ti(C, N)-Mo2C-Ni cermets [J]. Journal of Materials Science, 1999, 34(1): 3677-3684

[13]

ZhangS Y. Titanium carbide-based cermets process and properties[J]. Materials Science and Engineering, 1993, A163(1): 141-148

[14]

PasterH. Present status and development of tool materials (part 1): Cutting tools[J]. Int J Refractory Metals and Hard Materials, 1987, 6(4): 196-209

[15]

LindahlP, GustafsonP, RolanderU, et al.. Microstructure of model cermets with high Mo or W content[J]. Int J Refractory Metals and Hard Materials, 1999, 17(6): 411-421

[16]

TraceyV A. Nickel in hardmetals[J]. Int J Refractory Metals and Hard Materials, 1992, 11(3): 137-149

[17]

AhnS Y, KangS h. Formation of core/rim structures in Ti(C, N)-WC-Ni cermets via a dissolution and reprecipition process [J]. J Am Ceram Soc, 2000, 83(6): 1489-94

[18]

FengP, XiongW H, YuL X, et al.. Phase evolution and microstructure characteristics of ultrafine Ti(C, N)-based cermet by spark plasma sintering[J]. Int J Refractory Metals and Hard Materials, 2004, 22(2–3): 133-138

[19]

PasterH. Titanium-carbonitride-based hardalloys for cutting tools[J]. Mater Sci Eng A, 1988, A105–106(4): 401-409

[20]

ZackrissonJ, RolanderU, AnderénH O. Development of microstructure during sintering[J]. Metallurgical and Materials Transactions A, 2001, 32A: 85-94

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/