Electrochemical properties of vanadium pentoxide xerogel films

Yong Zhang , Xin-guo Hu , Yu-wen Liu , Yu-shan Cheng

Journal of Central South University ›› 2005, Vol. 12 ›› Issue (5) : 561 -566.

PDF
Journal of Central South University ›› 2005, Vol. 12 ›› Issue (5) : 561 -566. DOI: 10.1007/s11771-005-0123-9
Article

Electrochemical properties of vanadium pentoxide xerogel films

Author information +
History +
PDF

Abstract

Vanadium pentoxide xerogel (VXG) films were prepared by rapid quenching, then coin type 2016 size lithium rechargeable batteries were assembled and tested with the VXG film electrodes and lithium anodes. Electrochemical impedance spectroscopy (EIS) analysis result reveals the expected response for intercalation, except that there is almost no Warburg (diffusion) component. Analyses results of cyclic voltammetry (CV), constant discharge (CD) and discharge-charge(DC) indicate that the sample achieves a high initial discharge specific capacity of approximate 400 mA · h/g and a corresponding efficiency of 97 % in the voltage diapason of 1.5–4.0 V with a draining current of 60 mA/g. Its preservation ratio of capacity still keeps as high as 85 % even after 100 cycles. The good electrochemical performance indicates that VXG film material is a promising cathode for lithium rechargeable batteries.

Keywords

vanadium pentoxide xerogel films / electrochemical impedance spectroscopy / specific capacity / lithium rechargeable batteries

Cite this article

Download citation ▾
Yong Zhang, Xin-guo Hu, Yu-wen Liu, Yu-shan Cheng. Electrochemical properties of vanadium pentoxide xerogel films. Journal of Central South University, 2005, 12(5): 561-566 DOI:10.1007/s11771-005-0123-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BatesJ B, DudneyN J, GruzalskiG R, et al.. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries[J]. J Power Sources, 1993, 43(1–3): 103-103

[2]

CohenY S, AurbachD. Surface films phenomena on vanadium-pentoxide cathodes for Li and Li-ion batteries: in situ AFM imaging[J]. Electrochem Commun, 2004, 6(6): 536-542

[3]

WangY W, XubH Y, WangH, et al.. Solvothermal synthesis and characterization of γ-LiV2O5 nanorods [J]. Solid State Ionics, 2004, 167(3–4): 419-424

[4]

KimaY T, GopukumaraS, KimaK B. Performance of electrostatic spray-deposited vanadium pentoxide in lithium secondary cells[J]. J Power Sources, 2003, 117(1–2): 110-117

[5]

MossaP L, FubR, AucG, et al.. Investigation of cycle life of Li-LixV2O5 rechargeable batteries [J]. J Power Sources, 2003, 124(1): 261-265

[6]

McGrawJ M, PerkinsJ D, ZhangJ-G, et al.. Next generation V2O5 cathode materials for Li rechargeable batteries[J]. Solid State Ionics, 1998, 113–115: 408-408

[7]

ChungS K, ChmilenkoN A, BorovykovA Ya, et al.. Rechargeable lithium cells with modified vanadium oxide cathodes[J]. J Power Sources, 1999, 84(1): 6-6

[8]

BenmoussaM, OutzourhitA, BennounaA, et al.. Electrochromism in sputtered V2O5 thin films: structural and optical studies[J]. Thin Solid Films, 2002, 405(1–2): 12-12

[9]

KoikeS, FujiedaT, SakaiT, et al.. Characterization of sputtered vanadium oxide films for lithium batteries [J]. J Power Sources, 1999, 81–82: 581-581

[10]

Rajendra KumarR T, KarunagaranB, Senthil KumarV, et al.. Structural properties of V2O5 thin films prepared by vacuum evaporation[J]. Mat Sci Semicon Proc, 2003, 6(5–6): 544-544

[11]

KimY T, GopukumarS, KimK B, et al.. Performance of electrostatic spray-deposited vanadium pentoxide in lithium secondary cells [J]. J Power Sources, 2003, 117(1–2): 111-111

[12]

ViswanathamurthiP, BhattaraiN, KimH Y, et al.. Vanadium pentoxide nanofibers by electrospinning [J]. Scripta Mater, 2003, 49(6): 578-578

[13]

ParkS J, HaJ S, ChangY J, et al.. Time dependent evolution of vanadium pentoxide nanowires in sols [J]. Chem Phys Lett, 2004, 390(1–3): 199-199

[14]

ZampronioE C, GreggioD N, OliveiraH P. Preparation, characterization and properties of PVC/V2O5 hybrid organic-inorganic material[J]. J Non-cryst Solids, 2003, 332(1–3): 250-250

[15]

VivierV, BelairS, Cachet-VivierC, et al.. A rapid evaluation of vanadium oxide and manganese oxide as battery materials with a micro-electrochemistry technique[J]. J Power Sources, 2001, 103(1): 62-62

[16]

AnaissiF J, DemetsG J F, TomaH E. Electrochemical conditioning of vanadium (V) pentoxide xerogel films[J]. Electrochem Commun, 1999, 1(8): 332-332

[17]

CohenY S, AurbachD. Surface films phenomena on vanadium-pentoxide cathodes for Li and Li-ion batteries: in situ AFM imaging[J]. Electrochem Commun, 2004, 6(6): 540-540

[18]

FarcyJ, MessinaR, PerichonJ. Kinetic study of the lithium electroinsertion In V2O5 by Impedance spectroscopy[J]. J Electrochem Soc, 1990, 137(5): 1337-1337

[19]

VivierV, FarcyJ, Pereira-RamosJ P. Electrochemical lithium insertion in sol-gel crystalline vanadium pentoxide thin films[J]. Electrochim Acta, 1998, 44(5): 834-834

[20]

DelmasC, Cognac-AuradouH, CocciantelliJ M, et al.. The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation [J]. Solid State Ionics, 1994, 69(3–4): 257-257

[21]

CocciantelliJ M, MenetrierM, DelmasC, et al.. On the δ→γ irreversible transformation in Li/V2O5 secondary batteries[J]. Solid State Ionics, 1995, 78(1–2): 143-143

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/