Effect of cobalt loading on reducibility, dispersion and crystallite size of Co/Al2O3 fischer-tropsch catalyst

Hai-feng Xiong , Yu-hua Zhang , Jin-lin Li , Ying-ying Gu

Journal of Central South University ›› 2004, Vol. 11 ›› Issue (4) : 414 -418.

PDF
Journal of Central South University ›› 2004, Vol. 11 ›› Issue (4) : 414 -418. DOI: 10.1007/s11771-004-0086-2
Article

Effect of cobalt loading on reducibility, dispersion and crystallite size of Co/Al2O3 fischer-tropsch catalyst

Author information +
History +
PDF

Abstract

Co/Al2O3 Fischer-Tropsch synthesis catalysts with different cobalt loadings were prepared using incipient wetness impregnation method. The effects of cobalt loading on the properties of catalysts were studied by means of X-ray diffraction (XRD), temperature programmed reduction (TPR), hydrogen temperature programmed desorption (H2-TPD) and O2 titration. Co-support compound formation can be detected in catalyst system by XRD. For the Co/Al2O3 catalysts with low cobalt loading, CoAl2O4 phase appears visibly. Two different reduction regions can be presented for Co/Al2O3 catalysts, which belong to Co3O4 crystallites (reduction at 320°C) and cobalt oxidetallite size. The reduced Co/Al2O3 catalysts have two adsorption sites, and cobalt loading greatly influences the adsorption behavior. With the increase of cobalt loading, the amount of low temperature adsorption is increased, the amount of high temperature adsorption is decreased, and the percentage reduction and cobalt crystallite size are increased.

Keywords

Fischer-Tropsch synthesis / cobalt/alumina catalyst / temperature programmed reduction / hydrogen temperature programmed desorption

Cite this article

Download citation ▾
Hai-feng Xiong, Yu-hua Zhang, Jin-lin Li, Ying-ying Gu. Effect of cobalt loading on reducibility, dispersion and crystallite size of Co/Al2O3 fischer-tropsch catalyst. Journal of Central South University, 2004, 11(4): 414-418 DOI:10.1007/s11771-004-0086-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiJ L, CovilleN J. Effect of boron on the sulfur poisoning of Co/TiO2 Fischer-Tropsch catalysts[J]. Applied Catalysis A: General, 2001, 208(1): 177-184

[2]

AndensonR BThe Fischer-Tropsch Synthesis[M], 1984, Orlando, Academic Press

[3]

YingDong-hong, LiWen-huai, ZhongBing, et al.. Preparation of cobalt catalysts supported on mesoporous molecular sieves and their catalytic performance for Fischer-Tropsch synthesis[J]. Chinese Journal of Catalysis, 2000, 21(3): 221-224(in Chinese)

[4]

LiJ L, CovilleN J. The effect of boron on the catalyst reducibility and activity of Co/TiO2 Fischer-Tropsch catalysts[J]. Applied Catalysis A: General, 1999, 181(1): 201-208

[5]

AliS, ChenB, GoodwinJ G. Zr promotion of Co/SiO2 for Fischer-Tropsch synthesis[J]. Journal of Catalysis, 1995, 157(1): 35-41

[6]

AndreasF, MichaelC, van SteenE. Cobalt cluster effects in zirconium promoted Co/SiO2 Fischer-Tropsch catalysts [J]. Journal of Catalysis, 1999, 185(1): 120-130

[7]

KogekbauerA, GoodwinJ G, OukaciR J. Ruthenium promotion of Co/Al2O3 Fischer-Tropsch catalysts[J]. Journal of Catalysis, 1996, 160(1): 125-133

[8]

VoβM, BorgmannD, WedlerG. Characterization of alumina, silica, and titania supported cobalt catalysts [J]. Journal of Catalysis, 2002, 212(1): 10-21

[9]

SchankeD, VadaS, BlekkanE A, et al.. Study of Pt-promoted promoted cobalt CO hydrogenation catalysts[J]. Journal of Catalysis, 1995, 156(1): 85-95

[10]

RohrF, LindvajO A, HolemenA, et al.. Fischer-Tropsch synthesis over cobalt catalysts supported on zirconia-modified alumina [J]. Catalysis Today, 2000, 58(4): 247-254

[11]

BlikH V, PrinsR. Characterization of supported cobalt and cobalt-rhodium catalysts[J]. Journal of Catalysis, 1986, 97(1): 188-199

[12]

KhassinA A, YurievaT M, KustovaG N, et al.. Cobalt-aluminum co-precipitated catalysts and their performance in the Fischer-Tropsch synthesis[J]. Journal of Molecular Catalysis A: Chemical, 2001, 168(1–2): 193-207

[13]

ArnoldyP, MoulijnJ A. Temperature-programmed reduction of CoO/Al2O3 catalysts[J]. Journal of Catalysis, 1985, 93(1): 38-54

[14]

KhassinA A, YurievaT M, KaichevV V, et al.. Metal-support interactions in cobalt-aluminum coprecipitated catalysts: XPS and CO adsorption studies [J]. Journal of Molecular Catalysis A: Chemical, 2001, 175(1): 189-204

[15]

JongsomjitB, PanpranotJ, GoodwinJ G. Cosupport compound formation in alumina-supported cobalt catalysts [J]. Journal of Catalysis, 2001, 204(1): 98-109

[16]

JongsomjitB, PanpranotJ, GoodwinJ G. Effect of zirconia-modified alumina on the properties of Co/γ-Al2O3 catalysts[J]. Journal of Catalysis, 2003, 215(1): 66-77

[17]

WangWei-jye, ChenYu-wen. Influence of metal loading on the reducibility and hydrogenation activity of cobalt/alumina catalysts[J]. Applied Catalysis A: General, 1991, 77(2): 223-233

[18]

JacobsG, DasT, ZhangY Q, et al.. Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts[J]. Applied Cata-lysis A: General, 2002, 233(2): 263-281

[19]

LapidusA, KrylovaA, KazanskiiV, et al.. Hydrocarbon synthesis from carbon monoxide and hydrogen on impregnated cobalt catalysts[J]. Applied Catalysis A: General, 1991, 73(1): 65-82

[20]

MengMing, LinPei-yan, FuYi-lu. A study of pulse adsorption and temperature-programmed heating on Co-Pt(Pd,Rh)/γ-Al2O3 catalysts[J]. Journal of Molecular Catalysis, 1997, 11(5): 325-331(in Chinese)

[21]

ZhangJun-ling, ChenJian-gang, RenJie, et al.. Chemical treatment of γ-Al2O3 and its influence on the properties of Co-based catalysts for Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2003, 243(1): 121-133

[22]

HilmenA M, SchankeD, HanssenK F, et al.. Study of the effect of water on alumina supported cobalt Fischer-Tropsch catalysts [J]. Applied Catalysis A: General, 1999, 186(1): 169-188

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/