Critical point quantities and integrability conditions for a class of quintic systems

Yi-rong Liu , Ping Xiao

Journal of Central South University ›› 2004, Vol. 11 ›› Issue (1) : 109 -112.

PDF
Journal of Central South University ›› 2004, Vol. 11 ›› Issue (1) : 109 -112. DOI: 10.1007/s11771-004-0023-4
Article

Critical point quantities and integrability conditions for a class of quintic systems

Author information +
History +
PDF

Abstract

For a class of quintic systems, the first 16 critical point quantities are obtained by computer algebraic system Mathematica, and the necessary and sufficient conditions that there exists an exact integral in a neighborhood of the origin are also given. The technique employed is essentially different from usual ones. The recursive formula for computation of critical point quantities is linear and then avoids complex integral operations. Some results show an interesting contrast with the related results on quadratic systems.

Keywords

quintic system / critical point quantity / integrability condition / node quantity

Cite this article

Download citation ▾
Yi-rong Liu, Ping Xiao. Critical point quantities and integrability conditions for a class of quintic systems. Journal of Central South University, 2004, 11(1): 109-112 DOI:10.1007/s11771-004-0023-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DulacH. Détermination et intégration d’une certaine classe d’equations différentielles ayant pour point singulier un center [J]. Bull Sci Math, 1908, 32(2): 230-252(in French)

[2]

KapteynW. Over de middlepunten de integralkrommer van differentiaalvergelijkingen van de eerste orde en den eerstengraad [J]. Kon Ned Akad, 1911, 19: 1446-1457

[3]

FrömmerM. über das Auftreten vem wirbeln und strudeln in der Umbegung rationaler unbestimmtheitsstellen [J]. Math Ann, 1934, 109: 395-424 in German)

[4]

BautinN N. On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type [J]. Amer Math Soc Transl, 1962, 5(1): 396-413

[5]

LiCheng-zhi. On two problems in planar quadratic systems [J]. Science in China (A), 1982, 26(12): 1087-1096(in Chinese)

[6]

QinYuan-xun, LiuZun-quan. Machinary inference of formulas in differential equations (III) [J]. Kexue Tongbao, 1981, 26(7): 388-391(in Chinese)

[7]

ChavarrigaJ, GineJ. Integrability of a linear center perturbed by a fourth degree homogeneous polynomial [J]. Publications Mathematiques, 1996, 40(1): 21-39

[8]

ChavarrigaJ, GineJ. Integrability of a linear center perturbed by a fifth degree homogeneous polynomial [J]. Publications Mathematiques, 1997, 41(2): 335-356

[9]

RoussarieR. On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields [J]. Bol Soc Bras Math, 1986, 17(2): 67-101

[10]

CaiSui-lin. Weak saddle point and separatrix loop of quadratic system [J]. Acta Math Sinica, 1987, 30(4): 553-559(in Chinese)

[11]

ZhuDe-ming. Saddle values and integrability conditions of quadratic differential system [J]. Chin Ann Math, 1987, 88(4): 466-476

[12]

GucknheimerJ, RandR, SchlomiukD. Homoclinic bifurcation of plane quadratic systems[J]. Nonlinearity, 1989, 2: 405-418

[13]

JoyalP, RoussarieC. Saddle quantities and applications [J]. Journal of Differential Equation, 1989, 78: 374-399

[14]

YeYan-qianQualitative Theory of Polynomial Differential Systems [M], 1995, Shanghai, Shanghai Scientific and Technical Publishers: 85-108(in Chinese)

[15]

LiuYi-rong, LiJi-bin. Theory of critical point quantities in complex autonomous differential systems [J]. Science in China(A), 1990, 33(1): 10-23(in Chinese)

[16]

QIN Yuan-xun. Integral Surface Defined by Ordinary Differential Equation [M]. West-north University Publishers, 1985. (in Chinese).

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/