Coordination properties and structural units distribution of QTi in calcium aluminosilicate melts from MD simulation

Yong-quan Wu , Guo-chang Jiang , Jing-lin You , Huai-yu Hou , Hui Chen

Journal of Central South University ›› 2004, Vol. 11 ›› Issue (1) : 6 -14.

PDF
Journal of Central South University ›› 2004, Vol. 11 ›› Issue (1) : 6 -14. DOI: 10.1007/s11771-004-0002-9
Article

Coordination properties and structural units distribution of QTi in calcium aluminosilicate melts from MD simulation

Author information +
History +
PDF

Abstract

The distribution of Al(j) and the structural units distribution of QTi in calcium aluminosilicate melts were studied by means of molecular dynamics simulation. The results show that provided there exists lower-field strength cation relative to Al3+, such as alkaline and alkaline earth metals, Al will be four-coordinated but not six-coordinated. Meanwhile, if there exist a large number of higher-field strength cations such as Si4+ and little lower-field strength cation, six-coordinated aluminum will be formed. The relation of structural units distribution of QTi with chemical composition shift was also extracted, showing that as Ca2+ exists, the distributions of QSii, QAli or QTi have the similar changing trend with the variation of component. Because of high-temperature effect, the Al-tetrahedral units in melts are greatly active and unstable and there exist dynamic transforming equilibria of Al(3) ⇋ Al(4) and Al(5) ⇋ Al(4). The three-coordinated oxygen and charge-compensated bridging oxygen are proposed to explain phenomena of the negative charge redundancy of AlO4 and location of network modifier with charge-compensated function in aluminosilicate melts.

Keywords

Molecular dynamics simulation / calcium aluminosilicate melt / coordination number / structural unit of tetrahedra

Cite this article

Download citation ▾
Yong-quan Wu, Guo-chang Jiang, Jing-lin You, Huai-yu Hou, Hui Chen. Coordination properties and structural units distribution of QTi in calcium aluminosilicate melts from MD simulation. Journal of Central South University, 2004, 11(1): 6-14 DOI:10.1007/s11771-004-0002-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WuYong-quan, HouHuai-yu, ChenHui, et al.. Coordination and bond properties of Al and Si ions in the system of Al2O3-SiO2 melts[J]. Trans of Nonferrous Met Soc China, 2001, 11(6): 965-971

[2]

DanielI, GilletP, PoeB T, et al.. In-situ high-temperature raman spectroscopic studies of aluminosilicate liquids[J]. Phys Chem Minerals, 1995, 22: 74-86

[3]

MysenB. Role of Al in depolymerized, peralkaline aluminosilicate melts in the systems Li2O-Al2O3-SiO2, Na2O-Al2O3-SiO2, and K2O-Al2O3-SiO2 [J]. Am Mineral, 1990, 75(1): 120-134

[4]

HwaL G, HwangS L, LiuL C. Infrared and Raman spectra of calcium alumino-silicate glasses[J]. J Noncryst Solids, 1998, 238(3): 193-197

[5]

HandkeM, NocuńM. Vibrational spectroscopy of lithium silicate and aluminosilicate in crystalline form [J]. Mikrochim Acta, 1997, 14: 507-510

[6]

McMillanP F, PiriouB, NavrotskyA. A Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silicapotassium aluminate[J]. Geochim et Cosmochim Acta, 1982, 46: 2021-2037

[7]

DomineF, PiriouB. Raman spectroscopy of the SiO2-Al2O3-K2O vitreous system: distribution of silicon second nerghbors[J]. Am Mineral, 1986, 71(1): 38-50

[8]

FarnanI, StebbinsJ F. High-temperature 29Si NMR investigation of solid and molten silicates[J]. J Am Chem Soc, 1990, 112: 32-32

[9]

OestrikeR, YangW H, KirkpatrickR J, et al.. Highresolution 23Na, 27Al, and 29Si NMR spectroscopy of framework aluminosilicate glasses [J]. Geochim et Cosmochim Acta, 1987, 51: 2199-2209

[10]

EngelhardtG, NofzM, ForkelK, et al.. Structural studies of calcium aluminosilicate glasses by high resolution solid state 29Si and 27Al magic angle spinning nuclear magnetic resonance[J]. Phys Chem Glasses, 1985, 26(5): 157-165

[11]

SchneiderJ, MastelaroV R, RanepucciH, et al.. 29Si MAS-NMR studies of Qn structural units in metasilicate glasses and their nucleating ability[J]. J Noncryst Solids, 2000, 273(1–3): 8-18

[12]

ClarkT M, GrandinettiP J, FlorianP, et al.. An 17O NMR investigation of crystalline sodium metasilicate: implications for the determination of local structure in alkali silicates [J]. J Phys Chem B, 2001, 105: 12257-12265

[13]

MiuraY, MatsumotoS, NanbaT, et al.. X-ray photoelectron spectroscopy of sodium aluminosilicate glasses[J]. Phys Chem Glasses, 2000, 41(1): 24-31

[14]

HimmelB, WeightJ, GerberT, et al.. Structural of calcium aluminosilicate glasses: wide-angle X-ray scattering and computer simulation[J]. J Non-cryst Solids, 1991, 136: 27-35

[15]

CormierL, NeuvilleD R, CalasG. Structural and properties of low-silica calcium aluminosilicate glasses [J]. J Non-cryst Solids, 2000, 274(1–3): 110-114

[16]

HannonA C, ParkerJ M. The structural of aluminate glasses by neutron diffraction[J]. J Non-cryst Solids, 2000, 274(1–3): 102-109

[17]

KiefferJ, AngellC A. Structural incompatibilities and liquid-liquid phase separation in molten binary silicates: a computer simulation[J]. J Chem Phys, 1989, 90(9): 4982-4991

[18]

SteinD J, SperaF J. Molecular dynamics simulations of liquids and glasses in the system NaAlSiO4-SiO4: methodology and melt structures[J]. Am Mineral, 1995, 80(5): 417-431

[19]

WuYong-quan, JiangGuo-chang, YouJing-lin. Molecular dynamics simulation of CaO · Al2O3 molten structure[J]. J Inorganic Material, 2003, 18(3): 619-626(in Chinese)

[20]

HooverW G. Canonical dynamics: equilibrium phasespace distribution[J]. Phys Rev A, 1985, 31(3): 1695-1697

[21]

JenJ S, KalinowskiM R. An ESCA study of the bridging and non-bridging oxygen ratio in sodium silicate glass and the correlations to glass density and refractive index[J]. J Non-cryst Solids, 1989, 38&39: 21-26

[22]

AksayI A, PaskJ A, DavisR F. Densities of SiO2-Al2O3 melts[J]. J Am Chem Soc, 1979, 62(7–8): 332-336

[23]

DowerdarH. Density-structure correlation in CaO-SiO2, Na2O-CaO-SiO2 and K2O-CaO-SiO2 glasses[J]. Phys Chem Glasses, 1999, 40(2): 85-89

[24]

MegahedA A. Density of mixed alkali silicate glasses [J]. Phys Chem Glasses, 1999, 40(3): 130-134

[25]

Verein Deutscher EisenhüttenleuteSlag Atlas[M], 1981, Düsseldarf, Verlag Stahleisen MBH

[26]

HuangS P, YoshidaF, YouJ L, et al.. Ion motion in SiO2 melt[J]. J Phys: Conden Matt, 1999, 11: 5429-5436

[27]

StebbinsJ F, KroekerS, LeeS K, et al.. Quantification of five- and six- coordinated aluminum ions in aluminosilicate and fluoride-containing glasses by high-field, high-resolution 27Al NMR[J]. J Noncryst Solids, 2000, 275(1–2): 1-6

[28]

HanadaT, SogaN. Coordination and bond character of silicon and aluminum ions in amorphous thin films in the system SiO2-Al2O3 [J]. Commu Am Ceram Soc, 1982, 6: C-84-C-86

[29]

JiangGuo-chang, YouJing-lin, WuYong-quan, et al.. Discussion on the microstructural units of the silicate melts[J]. Geology and Geochemistry, 2003, 31(4): 80-86(in Chinese)

[30]

KeeferK D, BrownG E. Crystal structures and compositions of sanidine and high albite in cryptoperthitic intergrowth[J]. Am Mineral, 1978, 63(2): 1264-1273

[31]

WuYong-quan, HuangShi-ping, YouJing-lin, et al.. Molecular dynamics of structural properties of molten CaO-SiO2 with varying composition [J]. Trans Nonferrous Met Soc China, 2002, 12(6): 1218-1223

[32]

OkunoM, MarumoF. The structures of anorthite and albite melts[J]. Mineral J, 1982, 11: 180-187

[33]

TaylorM, BrownG E. Structure of mineral glasses (I): the feldspar glasses NaAlSi3O8, KAlSi3O8, CaAl2Si2O8[J]. Geochim Cosmochim Acta, 1979, 43: 61-75

[34]

MozziR L, WarrenB E. The structure of vitreous silica[J]. J Appl Cryst, 1969, 2: 164-172

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/