Stochastic analysis and convergence velocity estimation of genetic algorithms
Guan-qi Guo , Shou-yi Yu
Journal of Central South University ›› 2003, Vol. 10 ›› Issue (1) : 58 -63.
Stochastic analysis and convergence velocity estimation of genetic algorithms
Formulizations of mutation and crossover operators independent of representation of solutions are proposed. A kind of precisely quantitative Markov chain of populations of standard genetic algorithms is modeled. It is proved that inadequate parameters of mutation and crossover probabilities degenerate standard genetic algorithm to a class of random search algorithms without selection bias toward any solution based on fitness. After introducing elitist reservation, the stochastic matrix of Markov chain of the best-so-far individual with the highest fitness is derived. The average convergence velocity of genetic algorithms is defined as the mathematical expectation of the mean absorbing time steps that the best-so-far individual transfers from any initial solution to the global optimum. Using the stochastic matrix of the best-so-far individual, a theoretic method and the computing process of estimating the average convergence velocity are proposed.
genetic algorithm / operator formulization / Markov chain / convergence velocity
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
/
| 〈 |
|
〉 |