Separation of xylo-oligosaccharides from enzymatic hydrolytes using membrane reactor

Fu-guo Yang , Zheng Fang , Yong Xu , Chun-cai Yao , Shi-yuan Yu , Qiong-xia Zhu

Journal of Central South University ›› 2003, Vol. 10 ›› Issue (2) : 122 -125.

PDF
Journal of Central South University ›› 2003, Vol. 10 ›› Issue (2) : 122 -125. DOI: 10.1007/s11771-003-0052-4
Article

Separation of xylo-oligosaccharides from enzymatic hydrolytes using membrane reactor

Author information +
History +
PDF

Abstract

The time course of xylo-oligosaccharides concentration and xylo-oligosaccharides yield in the separation of xylo-oligosaccharides from enzymatic hydrolytes was studied using a membrane reactor with constant permeate flux of 4 L · m−2 · h−1. The results show that xylanases retain 90% of its activity in the reactor. The concentration of xylo-oligosaccharides achieves the maximum, about 5.48 g/L in 30 min. The difference of xylo-oligosaccharides in the retentate and permeate stream is low, <0.62 g/L, therefore it can permeate through membrane. Under the operating conditions that xylan concentration is 30.0 g/L, pH 5.0, operating pressure 16 kPa, temperature 48 °C, feed velocity 400 mL/min, reaction volume 400 mL, enzyme dosage 10% (volume fraction), dilution rate 1 h−1, and enzymatic hydrolysis time 195 min, the yield of xylo-oligosaccharides reaches 31.69%.

Keywords

xylo-oligosaccharides / enzymatic hydrolystes / membrane reactor / separation

Cite this article

Download citation ▾
Fu-guo Yang, Zheng Fang, Yong Xu, Chun-cai Yao, Shi-yuan Yu, Qiong-xia Zhu. Separation of xylo-oligosaccharides from enzymatic hydrolytes using membrane reactor. Journal of Central South University, 2003, 10(2): 122-125 DOI:10.1007/s11771-003-0052-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

McconvilleF X, LopezJ L, WaldS ABiocatalysis[M], 1990, New York, Van Nostrand Reinold

[2]

LopezJ L, MatsonS L. A multiphase/ extractive enzyme membrane reactor for production of diltiazem chiral intermediate[J]. J Membr Sci, 1997, 125(1): 189-211

[3]

WuD R, CramerS M, BelfortG. Kinetic resolution of racemic glycidyl butyrate using a multiphase membrane enzyme reactor[J]. Biotechnol Bioeng, 1993, 41: 979-990

[4]

DrioliE, GiornoLBiocatalytic Membrane Reactor: Applications in the Biotechnology and the Pharmaccutical Industry[M], 1999, London, Taylor & Francis

[5]

KulkarniN, ShendyeA, RaoM. Molecular and biotechnological aspects of xylanases[J]. FEMS Microbiol Rev, 1999, 23: 411-456

[6]

DeyD, HingeJ, ShendyeA. Purification and properties of extracellular endoxylanase from an alkalophilic thermophilic Bacilus sp[J]. Can J Microbiol, 1992, 38: 436-442

[7]

GeorgeS P, AhmadA, RaoM B. A novel thermostable xylonite from Thermonospora sp: Influence of additives on thermostability[J]. Bioresource Technol, 2001, 78: 221-224

[8]

MishraC, KeskarS, RaoM. Production and properties of extracellular xylanases from Neurospora crassa[J]. Appl Environ Microbiol, 1984, 48: 224-228

[9]

MillerG L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Anal Chem, 1959, 31: 426-428

[10]

SaddlerJ NBioconversion of Forest and Agricultural Plant Residues [M], 1993, Oxford, CAB International

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/