Ways of constructing optimal magic cube of order n when (n, 2·3·5·7)=1

Xiao-song Chen

Journal of Central South University ›› 2002, Vol. 9 ›› Issue (1) : 70 -72.

PDF
Journal of Central South University ›› 2002, Vol. 9 ›› Issue (1) : 70 -72. DOI: 10.1007/s11771-002-0014-2
Article

Ways of constructing optimal magic cube of order n when (n, 2·3·5·7)=1

Author information +
History +
PDF

Abstract

An optimal magic cube of order n is a magic cube whose row sums, column sums and oblique sums of 9n layers are n(n3 + 1)/2. The author proved that optimal magic cubes of order n may be constructed as long as n and 2, 3, 5, 7 are relatively prime, and a formula for making optimal magic cubes by using optimal Latin squares and optimal magic squares was given.

Keywords

optimal Latin square / optimal magic square / complete residue system

Cite this article

Download citation ▾
Xiao-song Chen. Ways of constructing optimal magic cube of order n when (n, 2·3·5·7)=1. Journal of Central South University, 2002, 9(1): 70-72 DOI:10.1007/s11771-002-0014-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lili. Fast way of constructing 1st class optimal magic cube of order 16n[J]. Mathematics Progress, 1988, 17(4): 385-390(in Chinese)

[2]

Andrews W S. Magic squares and cubes[M]. Dover Publications INC, 1960. 64–206.

[3]

HuaLuo-gengIntroduction to theory of numbers (in Chinese)[M], 1979, Beijing, Science Press

[4]

MinSi-he, YianShi-jianPrimary theory of numbers (in Chinese)[M], 1983, Beijing, People Education Press

[5]

ChenXiao-song. Way of constructing advanced Magic Cube of order n when (n, 2·3·5)=1 (in Chinese)[J]. Journal of Hunan Educational Institute, 1990, 5: 104-106

[6]

ChenXiao-song. The researching of ways of constructing prime number and it’s primitive root (in Chinese) [J]. Mathematical Theory and Applications, 2000, 20: 66-68

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/