Practical stabilization of receding-horizon control

Bi-yu Liu , Wei-hua Gui , Min Mu

Journal of Central South University ›› 2001, Vol. 8 ›› Issue (4) : 268 -271.

PDF
Journal of Central South University ›› 2001, Vol. 8 ›› Issue (4) : 268 -271. DOI: 10.1007/s11771-001-0068-6
Article

Practical stabilization of receding-horizon control

Author information +
History +
PDF

Abstract

The purpose of this work is to propose a scheme to stabilize the predictive control systems in the practical stability sense. In the paper, the authors dealt with a general discrete predictive control system xj+1|t=f(xj|t, uj|t) by using the Lyapunov direct method combining with receding-horizon control technique, and presented a new condition to guarantee the practical stabilization of the systems. With the proposed results, one can design the optimal controllers easily to practically stabilize the predictive control systems.

Keywords

receding-horizon control / practical stability / Lyapunov function / nonlinear system / optimization

Cite this article

Download citation ▾
Bi-yu Liu, Wei-hua Gui, Min Mu. Practical stabilization of receding-horizon control. Journal of Central South University, 2001, 8(4): 268-271 DOI:10.1007/s11771-001-0068-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

XiYu-geng, GengXiao-jun. Properties of receding horizon control for nonlinear systems[J]. Control Theory and Applications, 1999, 16(suppl): 118-123

[2]

KambhampatiC, MasonJ D, WarwickK. A stable one-step-ahead predictive control of nonlinear systems[J]. Automatica, 2000, 36(2): 485-495

[3]

ScokaertP O M, RawlingsJ B, MeadowsE S. Discrete-time stability with perturbations: application to model predictive control[J]. Automatica, 1997, 33(2): 463-470

[4]

ScokaertP O M, MayneD Q, RawlingsJ B. Suboptimal model predictive control (Feasibility implies stability) [J]. IEEE Trans AC, 1999, 44(3): 648-654

[5]

NicolaoG D, MagniL, ScattoliniK. On the robustness of receding-horizon control with terminal constants[J]. IEEE Trans AC, 1996, 41(2): 451-453

[6]

NicolaoG D, MagniL, ScattoliniK. Stabilizing receding-horizon control of nonlinear time-varying systems[J]. IEEE Trans AC, 1998, 43(4): 1030-1036

[7]

LakshmikanthamV, LeelaS, MartynyukA APractical stability of nonlinear systems[M], 1990, Singapore, World Scientific Publisher

[8]

LiaoXiao-xinAbsolute stability of nonlinear control systems [M], 1993, Netherlands, Kluwer Academic Publishers

[9]

LiaoXiao-xinTheory and application of stability for dynamical systems (in Chinese) [M], 2001, Beijing, Defense Industry Press

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/