Flow stress behavior of Cu13Zn alloy deformed at elevated temperature
Luo-xing Li , Da-shu Peng , Feng-hua Luo , Mei-ling Zhou
Journal of Central South University ›› 2000, Vol. 7 ›› Issue (4) : 198 -200.
Flow stress behavior of Cu13Zn alloy deformed at elevated temperature
The flow stress behavior of Cu13Zn alloy was investigated by compression tests carried out at 650 °C, 700 °C, 750 °C, 850 °C, and constant strain rates of 0.05 s−1, 0.1 s−1, 0.5 s−1, 1 s−1, 5 s−1, respectively. The results show that the flow stress increases with the increase of strain and reaches a steady-state stress, and the saturated stress (σs) increases with the increase of the strain rate and the decrease of temperature. Flow stress curves of the alloy deformed at elevated temperatures can be simulated effectively by the model proposed by Zhou and Clode, and the flow stress is described as a function of strain, strain rate and temperature. Material constants values are: Q=270.43 kJ/mol, α=0.020 94, A=1.747×1011 s−1 and n=3.549 mm2·N−1, the deformation mechanisms of the alloy are self-diffusion and dynamic recovery.
flow stress / deformation mechanism / copper / zinc / alloy
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
/
| 〈 |
|
〉 |