A series piezoelectric quartz crystal response kinetics for T. ferrooxidans growth in the presence of Cu(II)

Li-yuan Chai , Wan-zhi Wei , Shou-zhuo Yao

Journal of Central South University ›› 2000, Vol. 7 ›› Issue (1) : 15 -19.

PDF
Journal of Central South University ›› 2000, Vol. 7 ›› Issue (1) : 15 -19. DOI: 10.1007/s11771-000-0005-0
Article

A series piezoelectric quartz crystal response kinetics for T. ferrooxidans growth in the presence of Cu(II)

Author information +
History +
PDF

Abstract

The kinetics on the growth of T. ferroxidans in the presence of Cu(II) was studied using of series piezoelectric quartz crystal (SPQC). Arsenic ion inhibits the growth of T. ferrooxidans, which is consistent with the previous results by other measuring methods. This further demonstrates that the SPQC can monitor the chemical activity of T. ferrooxidans growth. Cupric ion accelerates the growth of T. ferrooxidans. The mechanism was discussed, i. e., copper promotes the protein enzyme of T. ferrooxidans, rusticyanin, to form over the range of cupric ion concentration studied. The reaction order of cupric ion in accelerating the bacterial growth is 0.067. The growth of T. ferrooxidans is dependent on temperature, the apparent reaction activation energy decreases from 25.56 kJ/mol to 18.32 kJ/mol because of the addition of 10 mg/L Cu(II) to the bacterial growth solution of pH 2.0 at initial inoculum of 10%.

Keywords

series piezoelectric quartz crystal / T. ferrooxidans / growth kinetics / sigmoid curve / cupric ion

Cite this article

Download citation ▾
Li-yuan Chai, Wan-zhi Wei, Shou-zhuo Yao. A series piezoelectric quartz crystal response kinetics for T. ferrooxidans growth in the presence of Cu(II). Journal of Central South University, 2000, 7(1): 15-19 DOI:10.1007/s11771-000-0005-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BarronJ L, LuekingD R. Growth and maintenance of Thiobacillus ferrooxidans cells[J]. Appl Environ Microbiol, 1990, 56: 2801-2806

[2]

VargasT, WiertzJ V, EscobarB, et al.EPD Congress, et al.The catalytic role of Thiobacillus ferrooxidans in the leaching of pure natural chalcopyrite[C], 1990, Warrendale, PA (USA), TMS: 229-229

[3]

GomezC, FigueroaM, MunozJ, et al.. Technical note—A study of bioleached chalcopyrite surfaces in the presence of Ag (I) by voltammetric methods[J]. Minerals Engineering, 1997, 10: 111-116

[4]

GomezC, RomanE, BlazquezM L, et al.. SEM and AES studies of chalcopyrite bioleaching in the presence of catalytic ions[J]. Minerals Engineering, 1997, 10: 825-835

[5]

SuklaL B, PanchanadikarV. Bioleaching of lateritic nickel ore using a heterotropic microorganism[J]. Hydrometallurgy, 1993, 32: 373-379

[6]

KarR N, SuklaL B, SwamyK M, et al.. Bioleaching of lateritic nickel ore by ultrasound[J]. Metall Mater Trans B, 1996, 27B: 351-354

[7]

ChoiW K, TormaA E, OhlineR W, et al.. Electrochemical of zinc sulfide leaching by Thiobacillus ferrooxidans[J]. Hydrometallurgy, 1993, 33: 137-152

[8]

ChaudhuryG R, DasR P. Bacterial leaching complex sulfides of copper, lead and zinc[J]. Intermational Journal of Mineral Processing, 1987, 21: 57-64

[9]

GroudevS N, SpasovaI I, IvanovI M. Two-stage microbial leaching of a refractory gold-bearing pyrite ore[J]. Minerals Engineering, 1996, 9: 707-713

[10]

BreedW, GlatzA, HansfordG S, et al.. The effect of As(III) and As(V) on the batch bioleaching of a pyrite — arsenopyrite concentrate[J]. Minerals Engineering, 1996, 9: 1235-1252

[11]

TaxiarchouM, AdamK, KontopoulosA. Bacterial oxidation conditions for gold extraction from Olympias refractory arsenical pyrite concentrate[J]. Hydrometallurgy, 1994, 36: 169-185

[12]

OlsonG J. Rate of pyrite bioleaching by Thiobacillus ferrooxidans: Results of an interlaboratory comparison[J]. Appl Environ Microbiol, 1994, 57: 642-644

[13]

McgoraC J, DuncanD W, WaldenC C. Growth of Thiobacillus ferrooxidans on various substrates[J]. Canadian Journal of Microbiology, 1969, 15: 135-138

[14]

SrihariS R, BhavarajuJ M, ModakJ M, et al.. Dissolution of sulfur particles by Thiobacillus ferrooxidans[J]. Biotechnol Bioeng, 1993, 41: 612-616

[15]

GoebelB M, StackebrandE. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments[J]. Appl Environ Microbiol, 1994, 60: 1614-1621

[16]

ZhangY J, YangX W. Mechanism for bioleaching sulfide[J]. Hydrometallurgy, 1995, 37: 181-192 in Chinese)

[17]

LiJ S, QiuG Z, WangD Z. Investigation of mechanism for bioleaching sulfide ore[J]. Hydrometallurgy, 1997, 39(3): 1-3(in Chinese)

[18]

RobertC B, GaryT H, StephenM. Enhanced yileds of iron-oxidizing bacteria by in situ electrochemical reduction of soluble iron in the growth medium[J]. Appl Environ Microbiol, 1994, 60: 2704-2710

[19]

NakasawaT. Effect of silver ion on the activity of Thiobacillus ferrooxians[J]. Sigen to Sozai, 1993, 109: 101-105(in Japanese)

[20]

PooleyF D, ShresthaG N. The distribution and influence of silver in pyrite bacterial leaching systems[J]. Minerals Engineering, 1996, 9: 825-836

[21]

PriceD W, Warren. The influence of silver ion on the electrochemical response of chalcopyrite and other mineral sulfide electrodes in sulfuric acid[J]. Hydrometallurgy, 1986, 15: 303-308

[22]

YunkerS B, RadovichJ M. Enhanced growth of Thiobacillus ferrooxidans in an electrolytic bioreactor[J]. Biotechnol Bioeng, 1985, 27: 307-319

[23]

YunkerS B, RadovichJ M. Enhancement of growth and ferrous iron oxidation rates of T. ferrooxidans by electrochemical reduction of ferric iron[J]. Biotechnol Bioeng, 1986, 28: 1876-1875

[24]

NataranjanK A. Effect of applied potentials on the activity and growth of Thiobacillus ferrooxidans[J]. Biotechnol Bioeng, 1992, 39: 907-913

[25]

MurrL E. Theory and practice of coopper sulfide leaching in dumps and in situ[J]. Miner Sci Eng, 1980, 12: 121-189

[26]

TuovinenO H, NiemelaS I, GyllenbergH G. Tolerance of Thiobacillus ferrooxidans to some metals[J]. Antonie van Leeuwenhoek J Microbiol Serol, 1971, 37: 489-496

[27]

ChaiL, WeiW, YaoS, et al.. A rapid method for determination of growth of Thiobacillus ferrooxidans by series piezoelectric quartz cyrstal[J]. Anal Lett, 1999, 30(12): 2443-2452

[28]

HarveyP I, CrundwellF K. The effect of As (III) on the growth of Thiobacillus ferrooxidans in an electrolytic cell under controlled redox potentials[J]. Minerals Engineering, 1996, 9: 1059-1068

[29]

EspensonJ HChemical kinetics and reaction mechanisms[M], 1981, New York, McGraw-Hill Book Company: 1-13

[30]

CoxJ C, BoxerD H. The purification and some properties of rusticyanin, a blue copper protein involved in iron(II) oxidation from T. ferrooxidans[J]. Biochem J, 1978, 174: 497-502

[31]

CobleyJ G, HaddockB A. The respiratory chain of Thiobacillus ferrooxidans: reduction of cytochromes by Fe2+ and preliminary characterization of rusticyanin, a novel ‘blue’ copper protein[J]. FEMS Microbiol Letts, 1975, 60: 29-33

[32]

CoxJ C, BoxerD H. The role of rusticyanin, a blue copper protein, in the electron transport chain of Thiobacillus ferrooxidans grown on iron or thiosulfate[J]. Biotechnol Appl Biochem, 1986, 8: 269-275

[33]

YamanakaT, FukumoriY. Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans[J]. FEMS Microbiol Revs, 1995, 17: 401-413

[34]

CarlosC, FelixG C. Copper resistance mechanism in bacteria and fungi[J]. FEMS Microbiol Revs, 1994, 14: 121-138

AI Summary AI Mindmap
PDF

212

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/