A commutativity condition fors-unital rings

Zhiyun Yin , Li Huang

Journal of Central South University ›› 1995, Vol. 2 ›› Issue (2) : 81 -83.

PDF
Journal of Central South University ›› 1995, Vol. 2 ›› Issue (2) : 81 -83. DOI: 10.1007/BF02652013
Article

A commutativity condition fors-unital rings

Author information +
History +
PDF

Abstract

LetR be ans-unital ring, and we prove a commutativity theorem ofR satisfying the following conditions: (1) For eachx, y εR, there exist bounded positive integersk=k(x,y), s=s(x,y), t=t(x,y) (where, at least one ofk, s, t is not equal to 1) such that (xy)k=xsyt, (xy)k+1=xs+1yt+1; (2)N, the set of all nilpotent elements ofR, isp-torsion free, wherep is the L. C. M. (least common multiple) of allk, s, t.

Keywords

s-unital rings / p-torsion free / commutativity

Cite this article

Download citation ▾
Zhiyun Yin, Li Huang. A commutativity condition fors-unital rings. Journal of Central South University, 1995, 2(2): 81-83 DOI:10.1007/BF02652013

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yin Zhiyun. On the commutativity for associative rings. Journal Cent South Inst Min Metall (in Chinese), 1985, (4) : 117–123

[2]

MogamiI, HonganM. Note on commutativity of rings. Math J Okayama Univ, 1978, 20: 21-24

[3]

Abu-KhuzamH, YaqubA. N-torsion free rings with commuting powers. Math Japonica, 1980, 25: 37-42

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/