High-performance 2D/3D perovskite solar cells fabricated by in-situ blade-coating with low-volatility co-solvents

Meihong LIU , Yafeng HAO , Fupeng MA , Pu ZHU , Huijia WU , Ziwei LI , Wenyu NIU , Yujie HUANG , Guitian HUANGFU , Junye LI , Tengteng LI , Longlong ZHANG , Cheng LEI , Ting LIANG

Journal of Measurement Science and Instrumentation ›› 2025, Vol. 16 ›› Issue (3) : 425 -434.

PDF (3647KB)
Journal of Measurement Science and Instrumentation ›› 2025, Vol. 16 ›› Issue (3) :425 -434. DOI: 10.62756/jmsi.1674-8042.2025041
Novel instrument and sensor technology
research-article

High-performance 2D/3D perovskite solar cells fabricated by in-situ blade-coating with low-volatility co-solvents

Author information +
History +
PDF (3647KB)

Abstract

Perovskite solar cells (PSCs) incorporating 2D/3D heterostructures have exhibited remarkable improvements in both power conversion efficiency and operational stability. Nevertheless, the prevalent spin-coating fabrication technique presents formidable challenges for scalable manufacturing processes. Herein, we present a blade-coating compatible methodology for fabricating high-performance 2D/3D PSCs utilizing a low-volatility t-amyl alcohol (t-AmOH)-dimethylformamide (DMF) mixed solvent system. Through systematic materials characterization and comprehensive device performance analysis, we demonstrate that this approach facilitates uniform spatial distribution of butylammonium iodide (BAI) organic spacers, thereby promoting the formation of a high-quality 2D/3D perovskite architecture characterized by enhanced crystallinity and substantially reduced defect density. The optimized device achieves a champion power conversion efficiency of 22.25% while demonstrating exceptional operational stability, retaining 83% of its initial performance after prolonged exposure under ambient conditions (45% relative humidity) for 1 000 h.

Keywords

perovskite solar cells / 2D/3D heterostructures / blade-coating / interface passivation / scalable fabrication

Cite this article

Download citation ▾
Meihong LIU, Yafeng HAO, Fupeng MA, Pu ZHU, Huijia WU, Ziwei LI, Wenyu NIU, Yujie HUANG, Guitian HUANGFU, Junye LI, Tengteng LI, Longlong ZHANG, Cheng LEI, Ting LIANG. High-performance 2D/3D perovskite solar cells fabricated by in-situ blade-coating with low-volatility co-solvents. Journal of Measurement Science and Instrumentation, 2025, 16(3): 425-434 DOI:10.62756/jmsi.1674-8042.2025041

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SUN X, SHI W, LIU T, et al. Vapor-assisted surface reconstruction enables out-door-stable perovskite solar modules. Science, 2025, 388(6750): 957-963.

[2]

YING Z Q, SU S Q, LI X, et al. Antisolvent seeding of self-assembled monolayers for flexible monolithic perovskite/Cu(In,Ga)Se2 tandem solar cells. Nature Energy, 2025, 10(6): 737-749.

[3]

National Renewable Energy Laboratory (NREL). (2023). Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html

[4]

LI N X, TAO S X, CHEN Y H, et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nature Energy, 2019, 4(5): 408-415.

[5]

PARK N G, ZHU K. Scalable fabrication and coating methods for perovskite solar cells and modules. Nature Reviews Materials, 2020, 5(5): 333-350.

[6]

TROUGHTON J, BRYANT D, WOJCIECHOWSKI K, et al. Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates. Journal of Materials Chemistry A, 2015, 3(17): 9141-9145.

[7]

DENG Y, PENG E, SHAO Y, et al. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy & Environmental Science, 2015, 8(5): 1544-1550.

[8]

YANG J L, SIEMPELKAMP B D, LIU D Y, et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano, 2015, 9(2): 1955-1963.

[9]

LIN Y Z, CHEN B, ZHAO F W, et al. Matching charge extraction contact for wide-bandgap perovskite solar cells. Advanced Materials, 2017, 29(26): 1700607.

[10]

WANG R, XUE J J, WANG K L, et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science, 2019, 366(6472): 1509-1513.

[11]

YANG S, WANG Y, LIU P R, et al. Functionalization of perovskite thin films with moisture-tolerant molecules. Nature Energy, 2016, 1: 15016.

[12]

ZHANG T K, WANG F, KIM H B, et al. Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science, 2022, 377(6605): 495-501.

[13]

SIDHIK S, WANG Y E, SIENA M D, A, et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 2022, 377(6613), 1425-1430.

[14]

NIU T Q, LU J, MUNIR R, et al. Stable high-performance perovskite solar cells via grain boundary passivation. Advanced Materials, 2018, 30(16): 1706576.

[15]

CHEN P, BAI Y, WANG S C, et al. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Advanced Functional Materials, 2018, 28(17): 1706923.

[16]

YANG R, LI R, CAO Y Z, WEI Y, et al. Oriented quasi-2D perovskites for high performance optoelectronic devices. Advanced Materials, 2018, 30(5): 1804771.

[17]

LI J B, MUNIR R, FAN Y Y, et al. Phase transition control for high performance blade-coated perovskite solar cells. Joule, 2018, 2(7): 1313-1330.

[18]

YANG M J, LI Z, REESE M O, et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nature Energy, 2017, 2: 17038.

[19]

DENG Y H, DONG Q F, BI C, et al. Air-stable, efficient mixed-cation perovskite solar cells with Cu electrode by scalable fabrication of active layer. Advanced Energy Materials, 2016, 6(11): 1600372.

[20]

SUN X, ZHANG C F, CHANG J J, et al. Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement. Nano Energy, 2016, 28: 417-425.

[21]

TURREN-CRUZ S.H, HAGFELDT A, SALIBA M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science, 2018, 362(6413): 449-453.

[22]

DONG Q F, FANG Y J, SHAO Y C, et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967-970.

[23]

DE QUILETTES D W, VORPAHL S M, STRANKS S D, et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015, 348(6235): 683-686.

[24]

WU W Q, RUDD P N, NI Z, et al. Reducing surface halide deficiency for efficient and stable Iodide-based perovskite solar cells. Journal of the American Chemical Society, 2020, 142(8): 3989-3996.

[25]

ABDI-JALEBI M, ANDAJI-GARMAROUDI Z, CACOVICH S, et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 2018, 555(7697): 497-501.

[26]

BIRKHOLD S T, ZIMMERMANN E, KOLLEK T, et al. Impact of crystal surface on photoexcited states in organic-inorganic perovskites. Advanced Functional Materials, 2016, 27(6): 1604995.

[27]

ZHENG X P, CHEN B, DAI J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nature Energy, 2017, 2: 17102.

[28]

PENG J, CHEN Y, ZHENG K, et al. Insights into charge carrier dynamics in organo-metal halide perovskites: from neat films to solar cells. Chemial Society Reviews, 2017, 46(19): 5714-5729.

[29]

JOHNSTON M B, HERZ L M. Hybrid perovskites for photovoltaics: Charge-carrier recombination, diffusion, and radiative efficiencies. Accounts of Chemical Research, 2016, 49(11): 146-154.

[30]

NENON D P, CHRISTIANS J A, WHEELER L M, et al. Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution. Energy & Environmental Science, 2016, 9(6): 2072-2082.

[31]

YUAN J, HAZARIKA A, ZHAO Q, et al. Metal halide perovskites in quantum dot solar cells: progress and prospects. Joule, 2020, 4(6): 1160-1185.

[32]

GRANCINI G, ROLDÁN-CARMONA C, ZIMMERMANN I, et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nature Communications, 2017, 8: 15684.

[33]

CORREA-BAENA J P, ABATE A, SALIBA M, et al. The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science, 2017, 10(3): 710-727.

[34]

JIANG Q, ZHAO Y, ZHANG X W, et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics, 2019, 13(7): 460-466.

[35]

MIN H, KIM M, LEE S U, et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science ,2019, 366(6466): 749-753.

PDF (3647KB)

62

Accesses

0

Citation

Detail

Sections
Recommended

/