Effect of MnO/PP separator on morphologies of Li metal deposition

Jun YAN

Journal of Measurement Science and Instrumentation ›› 2025, Vol. 16 ›› Issue (1) : 154 -160.

PDF (4376KB)
Journal of Measurement Science and Instrumentation ›› 2025, Vol. 16 ›› Issue (1) :154 -160. DOI: 10.62756/jmsi.1674-8042.2025015
Test and detection technology
research-article

Effect of MnO/PP separator on morphologies of Li metal deposition

Author information +
History +
PDF (4376KB)

Abstract

The application of lithium metal anodes is hindered by low Coulombic efficiency (CE), serious lithium dendrites and volume expansion. An MnO/Polypropylene (PP) composite separator was developed to regulate lithium metal deposition behaviors through in situ forming stable artificial solid electrolyte interface (SEI) passivating layers. The concentration of MnO in the cells can be maintained at a constant based on quite low solubility of MnO in the liquid electrolyte, and the dissolved MnO can be reduced to produce Li2O and Mn metal nanoparticles, which can not only function as nucleating seeds of lithium metal deposits but also repair the broken SEI layer. Dendritic-free Li deposits can be obtained by simple separator coating. It can also improve the electrochemical performance of lithium metal batteries. And it is benefit for applications of Li metal anodes.

Keywords

Li metal anode / MnO/PP composite separator / morphology / solid electrolyte interface (SEI)

Cite this article

Download citation ▾
Jun YAN. Effect of MnO/PP separator on morphologies of Li metal deposition. Journal of Measurement Science and Instrumentation, 2025, 16(1): 154-160 DOI:10.62756/jmsi.1674-8042.2025015

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MASIAS A, MARCICKI J, PAXTON W A. Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Letters, 2021, 6(2): 621-630.

[2]

JIANG G, LI K, YU F, et al. Robust artificial solid-electrolyte interfaces with biomimetic ionic channels for dendrite-free Li metal anodes. Advanced Energy Materials, 2021, 11(6): 2003496.

[3]

ZHENG G, WANG C, PEI A, et al. High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Letters, 2016, 1(6): 1247-1255.

[4]

SU D, ZHOU D, WANG C, et al. Toward high performance lithium–sulfur batteries based on Li2S cathodes and beyond: status, challenges, and perspective. Advanced Functional Materials, 2018, 28(38): 1800154.

[5]

HU Z, LIU F, GAO J, et al. Dendrite‐free lithium plating induced by in situ transferring protection layer from separator. Advanced Functional Materials, 2020, 30: 1907020.

[6]

QIAN J, HENDERSON W A, XU W, et al. High rate and stable cycling of lithium metal anode. Nature Communications, 2015, 6: 6362.

[7]

ZHU Y, XIE J, PEI A, et al. Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries. Nature Communications, 2019, 10: 2067.

[8]

LIU H, CHENG X, JIN Z, et al. Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem, 2019, 1(1): 100003.

[9]

ZHANG X, CHENG X, ZHANG Q. Advances in interfaces between Li metal anode and electrolyte. Advanced Materials Interfaces, 2018, 5(2): 1701097.

[10]

BABU G, AJAYAN P M. Good riddance, dendrites. Nature Energy, 2019, 4(8): 631-632.

[11]

LU D, SHAO Y, LOZANO T, et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Advanced Energy Materials, 2015, 5(3): 1400993.

[12]

XIAO J, LI Q, BI Y, et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nature Energy, 2020, 5(8): 561-568.

[13]

ZHANG H, JU S, XIA G, et al. Dendrite-free Li-metal anode enabled by dendritic structure. Advanced Functional Materials, 2021, 31(16): 2009712.

[14]

LIU S, JI X, PIAO N, et al. Inorganic-rich solid electrolyte interphase for advanced lithium metal batteries in carbonate electrolytes. Angewandte Chemie-International Edition, 2021, 60(7): 3661-3671,

[15]

YAN C, YAO Y, CHEN X, et al. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angewandte Chemie-International Edition, 2018, 57(43): 14055-14059.

[16]

LIU Y, LIN D, YUEN P Y, et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Advanced Materials, 2017, 29(10): 1605531.

[17]

KOZEN A C, LIN C, PEARSE A J, et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano, 2015, 9(6): 5884-5892.

[18]

PEI A, ZHENG G, SHI F, et al. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Letters, 2017, 17(2): 1132-1139.

[19]

YAN K, LU Z, LEE H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy, 2016, 1(3): 16010.

[20]

ZHAN C, LU J, JEREMY KROPF A, et al. Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems. Nature Communications, 2013, 4(1): 2437.

[21]

HUANG W, WANG H, BOYLE D T, et al. Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid-electrolyte interphases by cryogenic electron microscopy. ACS Energy Letters, 2020, 5(4): 1128-1135.

[22]

FANG C, LI J, ZHANG M, et al. Quantifying inactive lithium in lithium metal batteries. Nature, 2019, 572(7770): 511-515.

PDF (4376KB)

45

Accesses

0

Citation

Detail

Sections
Recommended

/