Development of a Polymer Filament Extruder: Recycling 3D Printer Waste

André Guimarães , Samuel Messias , João Lopes , José Salgueiro , Daniel Gaspar

Journal of Mechanical Engineering and Manufacturing ›› 2026, Vol. 2 ›› Issue (1) : 1 -1.

PDF (24314KB)
Journal of Mechanical Engineering and Manufacturing ›› 2026, Vol. 2 ›› Issue (1) :1 -1. DOI: 10.53941/jmem.2026.100001
Article
research-article

Development of a Polymer Filament Extruder: Recycling 3D Printer Waste

Author information +
History +
PDF (24314KB)

Abstract

This article presents the development of a polymer filament extruder to recycle waste from 3D printing. As additive manufacturing grows within Industry 4.0, managing thermoplastic waste like PLA, ABS, and PET has become a key challenge. The proposed modular system includes a shredder, an extrusion unit, and a winding module to produce high-quality filaments with precise dimensions (1.75 ± 0.03 mm), ensuring compatibility with 3D printers. Aligned with circular economy principles, the system promotes material reuse and reduces environmental impact. Results confirm its technical and environmental feasibility, with potential for large-scale use. Future improvements may include recycling other polymers and using smart sensors and algorithms to optimize the process.

Keywords

additive manufacturing / polymer filament extrusion / circular economy in 3D printing / recycling / PLA recycling / sustainable materials engineering

Cite this article

Download citation ▾
André Guimarães, Samuel Messias, João Lopes, José Salgueiro, Daniel Gaspar. Development of a Polymer Filament Extruder: Recycling 3D Printer Waste. Journal of Mechanical Engineering and Manufacturing, 2026, 2(1): 1-1 DOI:10.53941/jmem.2026.100001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sigov A.; Ratkin L.; Ivanov L.A.; et al. Emerging enabling technologies for industry 4.0 and beyond. Inf. Syst. Front. 2024, 26, 1585-1595.

[2]

Jandyal A.; Chaturvedi I.; Wazir I.; et al. 3D printing—A review of processes, materials and applications in industry 4.0. Sustain. Oper. Comput. 2022, 3, 33-42.

[3]

Kassab A.; Al Nabhani D.; Mohanty P.; et al. Advancing plastic recycling: Challenges and opportunities in the integration of 3D printing and distributed recycling for a circular economy. Polymers 2023, 15, 3881.

[4]

Madhu N.R.; Erfani H.; Jadoun S.; et al. Fused deposition modelling approach using 3D printing and recycled industrial materials for a sustainable environment: A review. Int. J. Adv. Manuf. Technol. 2022, 122, 2125-2138.

[5]

Lanzotti A.; Martorelli M.; Maietta S.; et al. A comparison between mechanical properties of specimens 3D printed with virgin and recycled PLA. Procedia CIRP 2019, 79, 143-146.

[6]

Pinho A.C.; Amaro A.M.; Piedade A.P. 3D printing goes greener: Study of the properties of post-consumer recycled polymers for the manufacturing of engineering components. Waste Manag. 2020, 118, 426-434.

[7]

Fico D.; Rizzo D.; De Carolis V.; et al. Sustainable polymer composites manufacturing through 3D printing technologies by using recycled polymer and filler. Polymers 2022, 14, 3756.

[8]

Wang F.; Zhou Q.; Zhang Z.; et al. Microwave absorption properties of carbon black-carbonyl iron/polylactic acid composite filament for fused deposition modeling. Materials 2022, 15, 5455.

[9]

Galib G.; Silva F. J.; Pedroso A. F.; Campilho R. D.; et al. A Comprehensive Review of Additive Manufacturing Technologies for Composite Materials. J. Mech. Eng. Manuf. 2025, 2-2.

[10]

Lopes J.; Messias S.; Guimarães A.; et al. Development of a Polymer Shredder: Recycling Waste from 3D Printers. Chin. Sci. Bull. 2024, 69, 4069-4086.

[11]

Giani N.; Mazzocchetti L.; Benelli T.; et al. Towards sustainability in 3D printing of thermoplastic composites: Evaluation of recycled carbon fibers as reinforcing agent for FDM filament production and 3D printing. Compos. Part A Appl. Sci. Manuf. 2022, 159, 107002.

[12]

Chawla K.; Singh R.; Singh J. On recyclability of thermoplastic ABS polymer as fused filament for FDM technique of additive manufacturing. World J. Eng. 2022, 19, 352-360.

[13]

Basilia B.A.; Concepcion J.N.; Prila J.J. Development of 3D Printing Filaments from Recycled PLA Reinforced with Nanoclay. Key Eng. Mater. 2024, 975, 121-126.

[14]

Lodha S.; Song B.; Park S.I.; et al. Sustainable 3D printing with recycled materials: A review. J. Mech. Sci. Technol. 2023, 37, 5481-5507.

[15]

Dorigato A. Recycling of polymer blends. Adv. Ind. Eng. Polym. Res. 2021, 4, 53-69.

[16]

Zander N.E.; Gillan M.; Burckhard Z.; et al. Recycled polypropylene blends as novel 3D printing materials. Addit. Manuf. 2019, 25, 122-130.

[17]

Rojek I.; Mikołajewski D.; Dostatni E.; et al. AI-optimized technological aspects of the material used in 3D printing processes for selected medical applications. Materials 2020, 13, 5437.

[18]

Moreno E.; Beltrán F.R.; Arrieta M.P.; et al.Technical evaluation of mechanical recycling of PLA 3D printing wastes. Proceedings 2020, 69, 19.

[19]

Su C.; Chen Y.; Tian S.; et al. Natural materials for 3D printing and their applications. Gels 2022, 8, 748.

[20]

Vidakis N.; Petousis M.; Maniadi A.; et al. Sustainable additive manufacturing: Mechanical response of acrylonitrile-butadiene-styrene over multiple recycling processes. Sustainability 2020, 12, 3568.

[21]

Maraveas C.; Kyrtopoulos I.V.; Arvanitis K.G. Evaluation of the Viability of 3D Printing in Recycling Polymers. Polymers 2024, 16, 1104.

[22]

Mikula K.; Skrzypczak D.; Izydorczyk G.; et al. 3D printing filament as a second life of waste plastics—A review. Environ. Sci. Pollut. Res. 2021, 28, 12321-12333.

[23]

Agbakoba V.C.; Webb N.; Jegede E.; et al. Mechanical recycling of waste PLA generated from 3D printing activities: Filament production and thermomechanical analysis. Macromol. Mater. Eng. 2024, 309, 2300276.

[24]

Lee D.; Lee Y.; Lee K.; et al. Development and evaluation of a distributed recycling system for making filaments reused in three-dimensional printers. J. Manuf. Sci. Eng. 2019, 141, 021007.

[25]

Gil Muñoz V.; Muneta L.M.; Carrasco-Gallego R.; et al. Evaluation of the circularity of recycled PLA filaments for 3D printers. Appl. Sci. 2020, 10, 8967.

[26]

Hachimi T.; Naboulsi N.; Majid F.; et al. Design and Manufacturing of a 3D printer filaments extruder. Procedia Struct. Integr. 2021, 33, 907-916.

[27]

Byrley P.; Wallace M.A.G.; Boyes W.K.; et al. Particle and volatile organic compound emissions from a 3D printer filament extruder. Sci. Total Environ. 2020, 736, 139604.

[28]

Groover M.P. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems; John Wiley & Sons: Hoboken, NJ, USA, 2010.

[29]

Zhang Y.; Ji G.; Ma D.; et al. Exergy and energy analysis of pyrolysis of plastic wastes in rotary kiln with heat carrier. Process Saf. Environ. Prot. 2020, 142, 203-211.

[30]

Kulko R.D.; Pletl A.; Hanus A.; et al. Detection of Plastic Granules and Their Mixtures. Sensors 2023, 23, 3441.

[31]

Fernandez L.M.; Lüthi A. Sleep spindles: Mechanisms and functions. Physiol. Rev. 2020, 100, 805-868.

[32]

Jian R.; Yang W.; Xie P.; et al. Enhancing a multi-field-synergy process for polymer composite plasticization: A novel design concept for screw to facilitate phase-to-phase thermal and molecular mobility. Appl. Therm. Eng. 2020, 164, 114448.

[33]

Wilczyński K.; Nastaj A.; Lewandowski A.; et al. Fundamentals of global modeling for polymer extrusion. Polymers 2019, 11, 2106.

[34]

Goh G.D.; Yap Y.L.; Tan H.K.J.; et al. Process-structure-properties in polymer additive manufacturing via material extrusion: A review. Crit. Rev. Solid State Mater. Sci. 2020, 45, 113-133.

[35]

Abeykoon C.; McMillan A.; Nguyen B.K. Energy efficiency in extrusion-related polymer processing: A review of state of the art and potential efficiency improvements. Renew. Sustain. Energy Rev. 2021, 147, 111219.

[36]

Nastaj A.; Wilczyński K. Optimization and scale-up for polymer extrusion. Polymers 2021, 13, 1547.

[37]

Manrich S. Processamento de Termoplásticos: Rosca Única, Extrusão e Matrizes, Injeção e Moldes; Artliber Ed.: São Paulo, Brazil, 2005.

[38]

Gotro J. Poly Lactic Acid (PLA) is Gaining Traction in the Market, Polymer Innovation Blog. Available online: https://polymerinnovationblog.com/poly-lactic-acid-pla-is-gaining-traction-in-the-market/ (accessed on 3 January 2025).

[39]

Yoon Y.I.; Park K.E.; Lee S.J.; et al. Fabrication of Microfibrous and Nano-/Microfibrous Scaffolds: Melt and Hybrid Electrospinning and Surface Modification of Poly(L-lactic acid) with Plasticizer. BioMed Res. Int. 2013, 2013, 309048.

[40]

Zmeskal O.; Marackova L.; Lapcikova T.; et al. Thermal properties of samples prepared from polylactic acid by 3D printing. AIP Conf. Proc. 2020, 2305, 020022.

[41]

Yu W.; Wang X.; Ferraris E.; et al. Melt crystallization of PLA/Talc in fused filament fabrication. Mater. Des. 2019, 182, 108013.

[42]

Autodesk, System requirements for Autodesk Inventor 2020. Available online: https://www.autodesk.com/support/technical/article/caas/sfdcarticles/sfdcarticles/System-requirements-for-Autodesk-Inventor-2020.html (accessed on 14 December 2024).

PDF (24314KB)

106

Accesses

0

Citation

Detail

Sections
Recommended

/