Haplotype-resolved genome of a papeda provides insights into the geographical origin and evolution of Citrus

Fusheng Wang , Shaohua Wang , Yilei Wu , Dong Jiang , Qian Yi , Manman Zhang , Hong Yu , Xiaoyu Yuan , Mingzhu Li , Guijie Li , Yujiao Cheng , Jipeng Feng , Xiaoli Wang , Chunzhen Cheng , Shiping Zhu , Renyi Liu

Journal of Integrative Plant Biology ›› 2025, Vol. 67 ›› Issue (2) : 276 -293.

PDF
Journal of Integrative Plant Biology ›› 2025, Vol. 67 ›› Issue (2) : 276 -293. DOI: 10.1111/jipb.13819
Research Article

Haplotype-resolved genome of a papeda provides insights into the geographical origin and evolution of Citrus

Author information +
History +
PDF

Abstract

The publication of several high-quality genomes has contributed greatly to clarifying the evolution of citrus. However, due to their complex genetic backgrounds, the origins and evolution of many citrus species remain unclear. We assembled de novo the 294-Mbp chromosome-level genome of a more than 200-year-old primitive papeda (DYC002). Comparison between the two sets of homologous chromosomes of the haplotype-resolved genome revealed 1.2% intragenomic variations, including 1.75 million SNPs, 149, 471 insertions and 154, 215 deletions. Using this genome as a reference, we resequenced and performed population and phylogenetic analyses of 378 representative citrus accessions. Our study confirmed that the primary origin center of core Citrus species is in South China, particularly in the Himalaya–Hengduan Mountains. Papeda species are an ancient Citrus type compared with C. ichangensis. We found that the evolution of the Citrus genus followed two radiations through two routes (to East China and Southeast Asia) along river systems. Evidence for the origin and evolution of some individual citrus species was provided. Papeda probably played an important role in the origins of Australian finger lime, citrons, Honghe papeda and pummelos; Ichang papeda originated from Yuanjiang city of Yunnan Province, China, and C. mangshanensis has a close relationship with kumquat and Ichang papeda. Moreover, the Hunan and Guangdong Provinces of China are predicted to be the origin center of mandarin, sweet orange and sour orange. Additionally, our study revealed that fruit bitterness was significantly selected against during citrus domestication. Taken together, this study provides new insight into the origin and evolution of citrus species and may serve as a valuable genomic resource for citrus breeding and improvement.

Keywords

citrus / domestication / evolution / haplotype-resolved genome / papeda

Cite this article

Download citation ▾
Fusheng Wang, Shaohua Wang, Yilei Wu, Dong Jiang, Qian Yi, Manman Zhang, Hong Yu, Xiaoyu Yuan, Mingzhu Li, Guijie Li, Yujiao Cheng, Jipeng Feng, Xiaoli Wang, Chunzhen Cheng, Shiping Zhu, Renyi Liu. Haplotype-resolved genome of a papeda provides insights into the geographical origin and evolution of Citrus. Journal of Integrative Plant Biology, 2025, 67(2): 276-293 DOI:10.1111/jipb.13819

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alonge, M.,Lebeigle, L.,Kirsche, M.,Jenike, K.,Ou, S.,Aganezov, S.,Wang, X.,Lippman, Z.B.,Schatz, M.C., and Soyk, S. (2022). Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biol. 23:1–19.

[2]

Bao, Y.X.,Zeng, Z.Y.,Yao, W.,Chen, X.,Jiang, M.W.,Sehrish, A.,Wu, B.,Powell, C.A.,Chen, B.S.,Xu, J.L., et al. (2023). A gap-free and haplotype-resolved lemon genome provides insights into flavor synthesis and huanglongbing (HLB) tolerance. Hortic. Res. 10: uhad020.

[3]

Barbhuiya, A.R.,Khan, M.L., and Dayanandan, S. (2016). Genetic structure and diversity of natural and domesticated populations of Citrus medica L. in the Eastern Himalayan region of Northeast India. Ecol. Evol. 6:3898–3911.

[4]

Buchfink, B.,Reuter, K., and Drost, H.G. (2021). Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18:366–368.

[5]

Camacho, C.,Coulouris, G.,Avagyan, V.,Ma, N.,Papadopoulos, J.,Bealer, K., and Madden, T.L. (2009). BLAST+: Architecture and applications. BMC Bioinf. 10:1–9.

[6]

Chen, H.,Jiang, D.,Hu, Z.,Li, K.,He, Y.,Chen, S.,Li, Z.,Zhou, C.,Li, L.,Zheng, D., et al. (2012). A newly discovered wild Ichang papeda population in Yuanjiang county, Yunnan province. J. Plant Genet. Resour. 13:929–935. (In Chinese).

[7]

Chen, J.,Yuan, Z.,Zhang, H.,Li, W.,Shi, M.,Peng, Z.,Li, M.,Tian, J.,Deng, X., and Cheng, Y. (2019). Cit1, 2RhaT and two novel CitdGlcTs participate in flavor-related flavonoid metabolism during citrus fruit development. J. Exp. Bot. 70:2759–2771.

[8]

Chen, S.,Zhou, Y.,Chen, Y., and Gu, J. (2018). Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: i884–i890.

[9]

Chen, Y.,Song, W.,Xie, X.,Wang, Z.,Guan, P.,Peng, H.,Jiao, Y.,Ni, Z.,Sun, Q., and Guo, W. (2020). A collinearity-incorporating homology inference strategy for connecting emerging assemblies in the triticeae tribe as a pilot practice in the plant pangenomic era. Mol. Plant 13:1694–1708.

[10]

Cheng, H.,Concepcion, G.T.,Feng, X.,Zhang, H., and Li, H. (2021). Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18:170–175.

[11]

Danecek, P.,Auton, A.,Abecasis, G.,Albers, C.A.,Banks, E.,DePristo, M.A.,Handsaker, R.E.,Lunter, G.,Marth, G.T., and Sherry, S.T. (2011). The variant call format and VCFtools. Bioinformatics 27:2156–2158.

[12]

Emms, D.M., and Kelly, S. (2019). OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 20:1–14.

[13]

Gmitter, F. G., and Hu, X. (1990). The possible role of yunnan, China, in the origin of contemporary Citrus species (Rutaceae). Econ Bot. 44:267–277.

[14]

Goel, M.,Sun, H.,Jiao, W.-B., and Schneeberger, K. (2019). SyRI: Finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 20:1–13.

[15]

Grabherr, M.G.,Haas, B.J.,Yassour, M.,Levin, J.Z.,Thompson, D.A.,Amit, I.,Adiconis, X.,Fan, L.,Raychowdhury, R., and Zeng, Q. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29:644–652.

[16]

Haas, B.J.,Delcher, A.L.,Mount, S.M.,Wortman, J.R.,Smith, Jr., R.K.,Hannick, L.I.,Maiti, R.,Ronning, C.M.,Rusch, D.B., and Town, C.D. (2003). Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31:5654–5666.

[17]

Haas, B.J.,Salzberg, S.L.,Zhu, W.,Pertea, M.,Allen, J.E.,Orvis, J.,White, O.,Buell, C.R., and Wortman, J.R. (2008). Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to assemble spliced alignments. Genome Biol. 9:1–22.

[18]

Hasegawa, S.,Berhow, M., and Fong, C. (1996). Analysis of bitter principles in Citrus. Fruit analysis. Springer,Berlin. pp. 59–80.

[19]

Hodgson, H.,De La Peña, R.,Stephenson, M.J.,Thimmappa, R.,Vincent, J.L.,Sattely, E.S., and Osbourn, A. (2019). Identification of key enzymes responsible for protolimonoid biosynthesis in plants: Opening the door to azadirachtin production. Proc. Natl. Acad. Sci. U.S.A. 116:17096–17104.

[20]

Huang, Y.,He, J.,Xu, Y.,Zheng, W.,Wang, S.,Chen, P.,Zeng, B.,Yang, S.,Jiang, X., and Liu, Z. (2023). Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in citrus fruits. Nat. Genet. 55:1964–1975.

[21]

Jin, J.J.,Yu, W.-B.,Yang, J.-B.,Song, Y.,DePamphilis, C.W.,Yi, T.-S., and Li, D.Z. (2020). GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21:1–31.

[22]

Jones, P.,Binns, D.,Chang, H.-Y.,Fraser, M.,Li, W.,McAnulla, C.,McWilliam, H.,Maslen, J.,Mitchell, A., and Nuka, G. (2014). InterProScan 5: Genome-scale protein function classification. Bioinformatics 30:1236–1240.

[23]

Kamm, J.,Terhorst, J.,Durbin, R., and Song, Y.S. (2020). Efficiently inferring the demographic history of many populations with allele count data. J. Am. Stat. Assoc. 115:1472–1487.

[24]

Karim, M., and Hashinaga, F. (2002). Preparation and properties of immobilized pummelo limonoid glucosyltransferase. Process Biochem. 38:809–814.

[25]

Katoh, K.,Misawa, K.,Kuma, K., and Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30:3059–3066.

[26]

Kiełbasa, S.M.,Wan, R.,Sato, K.,Horton, P., and Frith, M.C. (2011). Adaptive seeds tame genomic sequence comparison. Genome Res. 21:487–493.

[27]

Kita, M.,Hirata, Y.,Moriguchi, T.,Endo-Inagaki, T.,Matsumoto, R.,Hasegawa, S.,Suhayda, C.G., and Omura, M. (2000). Molecular cloning and characterization of a novel gene encoding limonoid UDP-glucosyltransferase in Citrus. FEBS Letters. 469:173–178.

[28]

Lajoie, B.R.,Dekker, J., and Kaplan, N. (2015). The Hitchhiker’s guide to Hi-C analysis: Practical guidelines. Methods 72:65–75.

[29]

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997.

[30]

Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100.

[31]

Li, H.,Handsaker, B.,Wysoker, A.,Fennell, T.,Ruan, J.,Homer, N.,Marth, G.,Abecasis, G., and Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079.

[32]

Li, W.,Li, G.,Yuan, Z.,Li, M.,Deng, X.,Tan, M.,Ma, Y.,Chen, J., and Xu, J. (2022). Illustration of the variation in the content of flavanone rutinosides in various citrus germplasms from genetic and enzymatic perspectives. Hortic. Res. 9: uhab017.

[33]

Liu, C.,Jiang, D.,Cheng, Y.,Deng, X.,Chen, F.,Fang, L.,Ma, Z., and Xu, J. (2013). Chemotaxonomic study of Citrus,Poncirus and Fortunella genotypes based on peel oil volatile compounds-deciphering the genetic origin of Mangshanyegan (Citrus nobilis Lauriro). PLoS ONE 8: e58411.

[34]

Liu, X.,Lin, C.,Ma, X.,Tan, Y.,Wang, J., and Zeng, M. (2018). Functional characterization of a flavonoid glycosyltransferase in sweet orange (Citrus sinensis). Front. Plant Sci. 9:166.

[35]

Lomsadze, A.,Ter-Hovhannisyan, V.,Chernoff, Y.O., and Borodovsky, M. (2005). Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 33:6494–6506.

[36]

Ma, G.,Zhang, L.,Sugiura, M., and Masaya, K. (2020). Citrus and health. In The Genus Citrus,Talon, M.,Caruso, M.,Gmitter, F.G., eds. (Duxford: Woodhead Publishing), pp. 495–511.

[37]

Marçais, G.,Delcher, A.L.,Phillippy, A.M.,Coston, R.,Salzberg, S.L., and Zimin, A. (2018). MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 14: e1005944.

[38]

Marçais, G., and Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27:764–770.

[39]

Mendes, F.K.,Vanderpool, D.,Fulton, B., and Hahn, M.W. (2021). CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 36:5516–5518.

[40]

Mou, F.,Ma, K.,Ma, S.,Duan, S., and Li, Y. (2016). Morphological diversity of leaf and its geographic differentiation of Citrus cavaleriei from Yunnan. Pak. J. Bot. 48:2343–2350.

[41]

Nakandala, U.,Masouleh, A.K.,Smith, M.W.,Furtado, A.,Mason, P.,Constantin, L., and Henry, R.J. (2023). Haplotype resolved chromosome level genome assembly of Citrus australis reveals disease resistance and other citrus specific genes. Hortic. Res. 10: uhad058.

[42]

Nicolosi, E.,Deng, Z.,Gentile, A.,La Malfa, S.,Continella, G., and Tribulato, E. (2000). Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor. Appl. Genet. 100:1155–1166.

[43]

Ou, S., and Jiang, N. (2018). LTR_retriever: A highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176:1410–1422.

[44]

Ou, S.,Su, W.,Liao, Y.,Chougule, K.,Agda, J.R.,Hellinga, A.J.,Lugo, C.S.B.,Elliott, T.A.,Ware, D., and Peterson, T. (2019). Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20:1–18.

[45]

Peng, Z.,Bredeson, J.V.,Wu, G.A.,Shu, S.,Rawat, N.,Du, D.,Parajuli, S.,Yu, Q.,You, Q., and Rokhsar, D.S. (2020). A chromosome-scale reference genome of trifoliate orange (Poncirus trifoliata) provides insights into disease resistance, cold tolerance and genome evolution in Citrus. Plant J. 104:1215–1232.

[46]

Pickrell, J., and Pritchard, J. (2012). Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8: e1002967.

[47]

Price, M.N.,Dehal, P.S., and Arkin, A.P. (2010). FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 5: e9490.

[48]

Purcell, S.,Neale, B.,Todd-Brown, K.,Thomas, L.,Ferreira, M.A.,Bender, D.,Maller, J.,Sklar, P.,De Bakker, P.I., and Daly, M.J. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81:559–575.

[49]

Ranallo-Benavidez, T.R.,Jaron, K.S., and Schatz, M.C. (2020). GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11:1–10.

[50]

Rao, M.J.,Zuo, H., and Xu, Q. (2020). Genomic insights into citrus domestication and its important agronomic traits. Plant Commun. 2:100138.

[51]

Rhie, A.,Walenz, B.P.,Koren, S., and Phillippy, A.M. (2020). Merqury: Reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21:245.

[52]

Sanderson, M.J. (2003). R8s: Inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19:301–302.

[53]

Shao, L.,Xing, F.,Xu, C.,Zhang, Q.,Che, J.,Wang, X.,Song, J.,Li, X.,Xiao, J.,Chen, L.L., et al. (2019). Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis. Proc. Natl. Acad. Sci. U.S.A. 116:5653–5658.

[54]

Shimizu, T.,Kitajima, A.,Nonaka, K.,Yoshioka, T.,Ohta, S.,Goto, S.,Toyoda, A.,Fujiyama, A.,Mochizuki, T., and Nagasaki, H. (2016). Hybrid origins of citrus varieties inferred from DNA marker analysis of nuclear and organelle genomes. PLoS ONE 11: e0166969.

[55]

Shimizu, T.,Tanizawa, Y.,Mochizuki, T.,Nagasaki, H.,Yoshioka, T.,Toyoda, A.,Fujiyama, A.,Kaminuma, E., and Nakamura, Y. (2017). Draft sequencing of the heterozygous diploid genome of Satsuma (Citrus unshiu Marc.) using a hybrid assembly approach. Front. Genet. 8:180.

[56]

Simão, F.A.,Waterhouse, R.M.,Ioannidis, P.,Kriventseva, E.V., and Zdobnov, E.M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212.

[57]

Smyth, G.K. (2005). limma: Linear Models for Microarray Data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor,R. Gentleman,V.J. Carey,W. Huber,R.A. Irizarry,S. Dudoit, eds. (New York, NY: Springer, Statistics for Biology and Health), pp. 397–420.

[58]

Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.

[59]

Stanke, M.,Keller, O.,Gunduz, I.,Hayes, A.,Waack, S., and Morgenstern, B. (2006). AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34: W435–W439.

[60]

Tang, H.,Bowers, J.E.,Wang, X.,Ming, R.,Alam, M., and Paterson, A.H. (2008). Synteny and collinearity in plant genomes. Science 320:486–488.

[61]

Thorne, J.L.,Kishino, H., and Painter, I.S. (1998). Estimating the rate of evolution of the rate of molecular evolution. Mol. Biol. Evol. 15:1647–1657.

[62]

Vassetzky, N.S., and Kramerov, D.A. (2013). SINEBase: A database and tool for SINE analysis. Nucleic Acids Res. 41: D83–D89.

[63]

Wang, F.,Yu, X.,Liu, X.,Shen, W.,Zhu, S., and Zhao, X. (2016). Temporal and spatial variations on accumulation of nomilin and limonin in the pummelos. Plant Physiol. Biochem. 106:23–29.

[64]

Wang, L.,He, F.,Huang, Y.,He, J.,Yang, S.,Zeng, J.,Deng, C.,Jiang, X.,Fang, Y., and Wen, S. (2018). Genome of wild mandarin and domestication history of mandarin. Mol. Plant 11:1024–1037.

[65]

Wang, L.,Huang, Y.,Liu, Z.,He, J.,Jiang, X.,He, F.,Lu, Z.,Yang, S.,Chen, P., and Yu, H. (2021). Somatic variations led to the selection of acidic and acidless orange cultivars. Nat. Plants 7:954–965.

[66]

Wang, N.,Cao, S.,Liu, Z.,Xiao, S.,Hu, J.,Xu, X.,Chen, P.,Ma, Z.,Ye, J.,Chai, L., et al. (2023). Genomic conservation of crop wild relatives: A case study of citrus. PLoS Genet. 19: e1010811.

[67]

Wang, N.,Chen, P.,Xu, Y.Y.,Guo, L.X.,Li, X.X.,Yi, H.L.,Larkin, R.M.,Zhou, Y.F.,Deng, X.X., and Xu, Q. (2024). Phased genomics reveals hidden somatic mutations and provides insight into fruit development in sweet orange. Hortic. Res. 11: uhad268.

[68]

Wang, N.,Song, X.,Ye, J.,Zhang, S., and Cao, Z. (2022). Structural variation and parallel evolution of apomixis in citrus during domestication and diversification. Natl. Sci. Rev. 9: nwac114.

[69]

Wang, X.,Xu, Y.,Zhang, S.,Cao, L.,Huang, Y.,Cheng, J.,Wu, G.,Tian, S.,Chen, C., and Liu, Y. (2017). Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat. Genet. 49:765–772.

[70]

Wang, Y.,Tang, H.,DeBarry, J.D.,Tan, X.,Li, J.,Wang, X.,Lee, T.-h,Jin, H.,Marler, B., and Guo, H. (2012). MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40: e49.

[71]

Wu, G.A.,Sugimoto, C.,Kinjo, H.,Azama, C.,Mitsube, F.,Talon, M.,Gmitter Jr., F.G., and Rokhsar, D.S. (2021). Diversification of mandarin citrus by hybrid speciation and apomixis. Nat. Commun. 12:4377.

[72]

Wu, G.A.,Terol, J.,Ibanez, V.,López-García, A.,Pérez-Román, E.,Borredá C.,Domingo, C.,Tadeo, F.R.,Carbonell-Caballero, J., and Alonso, R. (2018). Genomics of the origin and evolution of Citrus. Nature 554:311–316.

[73]

Wu, T.D., and Watanabe, C.K. (2005). GMAP: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21:1859–1875.

[74]

Wu, Y.,Wang, F.,Lyu, K., and Liu, R. (2024). Comparative analysis of transposable elements in the genomes of Citrus and Citrus-related genera. Plants 13:2462.

[75]

Xie, S.,Manchester, S.R.,Liu, K.,Wang, Y., and Sun, B. (2013). Citrus linczangensis sp. n., a leaf fossil of Rutaceae from the late Miocene of Yunnan, China. Int. J. Plant Sci. 174:1201–1207.

[76]

Xu, Q.,Chen, L.-L.,Ruan, X.,Chen, D.,Zhu, A.,Chen, C.,Bertrand, D.,Jiao, W.-B.,Hao, B.-H., and Lyon, M.P. (2013). The draft genome of sweet orange (Citrus sinensis). Nat. Genet. 45:59–66.

[77]

Yang, X.,Li, H.,Liang, M.,Xu, Q.,Chai, L., and Deng, X. (2015). Genetic diversity and phylogenetic relationships of citron (Citrus medica L.) and its relatives in southwest China. Tree Genet. Genomes 11:1–13.

[78]

Yang, X.,Li, H.,Yu, H.,Chai, L.,Xu, Q., and Deng, X. (2017). Molecular phylogeography and population evolution analysis of Citrus ichangensis (Rutaceae). Tree Genet. Genomes 13:1–16.

[79]

Yang, Y.,Pan, Y.,Gong, X., and Fan, M. (2010). Genetic variation in the endangered Rutaceae species Citrus hongheensis based on ISSR fingerprinting. Genet. Resour. Crop Evol. 57:1239–1248.

[80]

Yang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24:1586–1591.

[81]

Yusof, S.,Ghazali, H.M., and King, G.S. (1990). Naringin content in local citrus fruits. Food Chem. 37:113–121.

[82]

Zhang, X.,Chen, S.,Shi, L.,Gong, D.,Zhang, S.,Zhao, Q.,Zhan, D.,Vasseur, L.,Wang, Y., and Yu, J. (2021). Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nat. Genet. 53:1250–1259.

[83]

Zhang, X.,Zhang, S.,Zhao, Q.,Ming, R., and Tang, H. (2019). Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nat. Plants 5:833–845.

RIGHTS & PERMISSIONS

2025 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

206

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/