TaDL interacts with TaB3 and TaNF-YB1 to synergistically regulate the starch synthesis and grain quality in bread wheat

Guoyu Liu , Runqi Zhang , Ziyan Wu , Jiazheng Yu , Hongyao Lou , Jun Zhu , Jie Liu , Jinying Gou , Zhongfu Ni , Qixin Sun , Rongqi Liang

Journal of Integrative Plant Biology ›› 2025, Vol. 67 ›› Issue (2) : 355 -374.

PDF
Journal of Integrative Plant Biology ›› 2025, Vol. 67 ›› Issue (2) : 355 -374. DOI: 10.1111/jipb.13815
Research Article

TaDL interacts with TaB3 and TaNF-YB1 to synergistically regulate the starch synthesis and grain quality in bread wheat

Author information +
History +
PDF

Abstract

Starch biosynthesis is a critical factor in wheat (Triticum aestivum L.) quality and yield. However, the full scope of its regulation is not fully understood. Here we report that TaDL interacts with TaB3 and TaNF-YB1 to synergistically regulate starch biosynthesis and quality in wheat. Genome-edited tadl mutant lines had smaller and lighter grains with lower total starch and amylose contents compared to wild type (WT). Correspondingly, the transcript levels of starch biosynthesis-related genes, including TaSUS1,TaSUS2,TaAGPL2,TaSBEIIa,TaGBSSII, and TaSWEET2a, were markedly lower at 15 d after flowering (DAF) in tadl mutants. TaDL physically interacted with TaB3 and TaNF-YB1 and activated the transcription of TaSUS2 and TaAGPL2 through direct binding to their promoter regions. A null mutant of TaB3 also affected grain filling, with phenotypes similar to those of tadl mutants, whereas overexpression of TaNF-YB1 promoted grain filling. Our study demonstrated that TaDL plays an essential role in starch biosynthesis and identified an elite allele (TaDL-BI) associated with starch content, providing insights into the underlying molecular mechanism of wheat grain filling, which may be useful in breeding of high-yielding wheat and quality improvement.

Keywords

grain quality / starch biosynthesis / TaB3 / TaDL / TaNF-YB1 / transcription factor / wheat ( Triticum aestivum L.)

Cite this article

Download citation ▾
Guoyu Liu, Runqi Zhang, Ziyan Wu, Jiazheng Yu, Hongyao Lou, Jun Zhu, Jie Liu, Jinying Gou, Zhongfu Ni, Qixin Sun, Rongqi Liang. TaDL interacts with TaB3 and TaNF-YB1 to synergistically regulate the starch synthesis and grain quality in bread wheat. Journal of Integrative Plant Biology, 2025, 67(2): 355-374 DOI:10.1111/jipb.13815

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Appels, R.,Eversole, K.,Stein, N.,Feuillet, C.,Keller, B.,Rogers, J.,Pozniak, C.J.,Choulet, F.,Distelfeld, A.,Poland, J., et al. (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:7191.

[2]

Bai, A.N.,Lu, X.D.,Li, D.Q.,Liu, J.X., and Liu, C.M. (2016). NF-YB1-regulated expression of sucrose transporters in aleurone facilitates sugar loading to rice endosperm. Cell Res. 26:384–388.

[3]

Bahaji, A.,Li, J.,Sanchez-Lopez, A.M.,Baroja-Fernandez, E.,Munoz, F.J.,Ovecka, M.,Almagro, G.,Montero, M.,Ezquer, I.,Etxeberria, E., et al. (2014). Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnol. Adv. 32:87–106.

[4]

Baroja-Fernández, E.,Muñoz, F.J.,Saikusa, T.,Rodríguez-López, M.,Akazawa, T., and Pozueta-Romero, J. (2003). Sucrose synthase catalyzes the de novo production of ADPglucose linked to starch biosynthesis in heterotrophic tissues of plants. Plant Cell Physiol. 44:500–509.

[5]

Bello, B.K.,Hou, Y.,Zhao, J.,Jiao, G.,Wu, Y.,Li, Z.,Wang, Y.,Tong, X.,Wang, W., and Yuan, W. (2019). NF-YB1-YC12-bHLH144 complex directly activates Wx to regulate grain quality in rice (Oryza sativa L.). Plant Biotechnol. J. 17:1222–1235.

[6]

Bertolini, A.C.,Souza, E.,Nelson, J.E., and Huber, K.C. (2003). Composition and reactivity of A-and B-type starch granules of normal, partial waxy, and waxy wheat. Cereal Chem. 80:544–549.

[7]

Bowman, J.L., and Smyth, D.R. (1999). CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126:2387–2396.

[8]

Chai, L.,Chen, Z.,Bian, R.,Zhai, H.,Cheng, X.,Peng, H.,Yao, Y.,Hu, Z.,Xin, M.,Guo, W., et al. (2018). Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.). Theor. Appl. Genet. 131:2621–2637.

[9]

Chai, L.,Xin, M.,Dong, C.,Chen, Z.,Zhai, H.,Zhuang, J.,Cheng, X.,Wang, N.,Geng, J.,Wang, X., et al. (2022). A natural variation in Ribonuclease H-like gene underlies Rht8 to confer “Green Revolution” trait in wheat. Mol. Plant 15:377–380.

[10]

Chen, J.,Zhao, L.,Li, H.,Yang, C.,Lin, X.,Lin, Y.,Zhang, H.,Zhang, M.,Bie, X.,Zhao, P., et al. (2024a). Nuclear factor-Y-polycomb repressive complex2 dynamically orchestrates starch and seed storage protein biosynthesis in wheat. Plant Cell 18: koae256.

[11]

Chen, Y.M.,Song, W.J.,Xie, X.M.,Wang, Z.H.,Guan, P.F.,Peng, H.R.,Jiao, Y.N.,Ni, Z.F.,Sun, Q.X., and Guo, W.L. (2020). A collinearity-incorporating homology inference strategy for connecting emerging assemblies in the triticeae tribe as a pilot practice in the plant pangenomic era. Mol. Plant 13:1694–1708.

[12]

Chen, Z.D.,Wang, J.F.,Dong, D.Q.,Lou, C.,Zhang, Y.,Wang, Y.X.,Yu, B.,Wang, P.F., and Kang, G.Z. (2024b). Comparative analysis of TaPHT1;9 function using CRISPR-edited mutants, ectopic transgenic plants and their wild types under soil conditions. Plant Soil.

[13]

Chen, Z.Y.,Ke, W.S.,He, F.,Chai, L.L.,Cheng, X.J.,Xu, H.W.,Wang, X.B.,Du, D.J.,Zhao, Y.D.,Chen, X.Y., et al. (2022). A single nucleotide deletion in the third exon of ft-d1 increases the spikelet number and delays heading date in wheat (Triticum aestivum L.). Plant Biotechnol. J. 20:920–933.

[14]

Crosbie, G.B.,Ross, A.S.,Moro, T., and Chiu, P.C. (1999). Starch and protein quality requirements of Japanese alkaline noodles (Ramen). Cereal Chem. 76:328–334.

[15]

Du, D.J.,Zhang, D.X.,Yuan, J.,Feng, M.,Li, Z.J.,Wang, Z.H.,Zhang, Z.H.,Li, X.T.,Ke, W.S.,Li, R.H., et al. (2021). FRIZZY PANICLE defines a regulatory hub for simultaneously controlling spikelet formation and awn elongation in bread wheat. New Phytol. 231:814–833.

[16]

Dong, J.,Li, G.Z.,Han, Q.X.,Xie, Y.X.,Wang, Y.H.,Feng, W.,Ma, D.Y.,Wang, C.Y.,Guo, T.C., and Kang, G.Z. (2020). Isolation and function of TabHLH39 transcription factor regulating expression of the TaAGPL1 gene in bread wheat. J. Agr. Sci. Tech. 22:18–26.

[17]

Feng, T.T.,Wang, L.L.,Li, L.Y.,Liu, Y.,Chong, K.,Theißen, G., and Meng, Z. (2022). OsMADS14 and NF-YB1 cooperate in the direct activation of OsAGPL2 and Waxy during starch synthesis in rice endosperm. New Phytol. 234:77–92.

[18]

Fradgley, N.S.,Bacon, J.,Bentley, A.R.,Costa-Neto, G.,Cottrell, A.,Crossa, J.,Cuevas, J.,Kerton, M.,Pope, E.,Swarbreck, S.M., et al. (2023). Prediction of near-term climate change impacts on UK wheat quality and the potential for adaptation through plant breeding. Glob. Chang Biol. 29:1296–1313.

[19]

Gao, Y.J.,An, K.X.,Gwo, W.W.,Chen, Y.M.,Zhang, R.J.,Zhang, X.,Chang, S.Y.,Rossi, V.,Jin, F.M.,Cao, X.Y., et al. (2021). The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. Plant Cell 33:603–622.

[20]

Guo, D.,Hou, Q.,Zhang, R.,Lou, H.,Li, Y.,Zhang, Y.,You, M.,Xie, C.,Liang, R., and Li, B. (2020). Over-expression TaSPA-B reduces prolamin and starch accumulation in wheat (Triticum aestivum L.) grains. Int. J. Mol. Sci. 21:3257.

[21]

Hao, L.D.,Zhang, J.S.,Shi, S.B.,Li, P.,Li, D.D.,Zhang, T.J., and Guo, H.B. (2022). Identifification and expression profifiles of the YABBY transcription factors in wheat. Peer J. 10: e12855.

[22]

He, Z.H.,Yang, J.,Zhang, Y.,Quail, K.J., and Pena, R.J. (2004). Pan bread and dry white Chinese noodle quality in Chinese winter wheats. Euphytica 139:257–267.

[23]

Hoshino, T.,Ito, S.,Hatta, K.,Nakamura, T., and Yamamori, M. (1996). Development of waxy common wheat by haploid breeding. Breeding Sci. 46:185–188.

[24]

Huang, L.,Tan, H.,Zhang, C.,Li, Q., and Liu, Q. (2021). Starch biosynthesis in cereal endosperms: An updated review over the last decade. Plant Commun. 2:100237.

[25]

Ishida, Y.,Tsunashima, M.,Hiei, Y., and Komari, T. (2015). Wheat (Triticum aestivum L.) transformation using immature embryos. Methods Mol. Biol. 1223:189–198.

[26]

Jackson, R.J. (1993). Cytoplasmic regulation of mRNA function: The importance of the 3′ untranslated region. Cell 74:9–14.

[27]

James, M.G.,Denyer, K., and Myers, A.M. (2003). Starch synthesis in the cereal endosperm. Curr. Opin. Plant Biol. 6:215–222.

[28]

Jeon, J.S.,Ryoo, N.,Hahn, T.R.,Walia, H., and Nakamura, Y. (2010). Starch biosynthesis in cereal endosperm. Plant Physiol. Biochem. 48:383–392.

[29]

Jiang, Q.Y.,Hou, J.,Hao, C.Y.,Wang, L.F.,Ge, H.M.,Dong, Y.S., and Zhang, X.Y. (2011). The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct. Integr. Genomics 11:49–61.

[30]

Jing, Y.J.,Guo, Q., and Lin, R.C. (2019). The B3-domain transcription factor VAL1 regulates the floral transition by repressing FLOWERING LOCUS T. Plant Physiol. 181:236–248.

[31]

Kanai, M.,Sugiyama, M.,Kondo, M.,Yamada, K.,Nishimura, M., and Mano, S. (2023). Fusing the 3’UTR of seed storage protein genes leads to massiverecombinant protein accumulation in seeds. Sci. Rep. 13:12217.

[32]

Kaur, L.,Singh, J.,McCarthy, O.J., and Singh, H. (2007). Physico-chemical, rheological and structural properties of fractionated potato starches. Int. J. Food Eng. 82:383–394.

[33]

Kim, H.S., and Huber, K.C. (2010). Physicochemical properties and amylopectin fine structures of A-and B-type granules of waxy and normal soft wheat starch. J. Cereal Sci. 51:256–264.

[34]

Konik, C.M.,Mikkelsen, L.M.,Moss, R., and Gore, P.J. (1994). Relationships between physical starch properties and yellow alkaline noodle quality. Starch 46:292–299.

[35]

Keeling, P.L., and Myers, A.M. (2010). Biochemistry and genetics of starch synthesis. Annu. Rev. Food Sci T. 1:271–303.

[36]

Kong, L.,Si, J.,Zhang, B.,Feng, B.,Li, S., and Wang, F. (2013). Environmental modification of wheat grain protein accumulation and associated processing quality: A Case Study of China. Aust. J. Crop Sci. 7:173–181.

[37]

Kuersten, S., and Goodwin, E.B. (2003). The power of the 3′ UTR: Translational control and development. Nat. Rev. Genet. 4:626–637.

[38]

Li, A.L.,Geng, S.F.,Zhang, L.Q.,Liu, D.C., and Mao, L. (2015). Making the bread: Insights from newly synthesized allohexaploid wheat. Mol. Plant 8:847–859.

[39]

Li, J.,Xie, L.,Tian, X.,Liu, S.,Xu, D.,Jin, H.,Song, J.,Dong, Y.,Zhao, D.,Li, G., et al. (2021). TaNAC100 acts as an integrator of seed protein and starch synthesis exerting pleiotropic effects on agronomic traits in wheat. Plant J. 108:829–840.

[40]

Li, M.M.,Dong, L.L.,Li, B.B.,Wang, Z.Z.,Xie, J.Z.,Qiu, D.,Li, Y.H.,Shi, W.Q.,Yang, L.J.,Wu, Q.H., et al. (2020). A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytol. 228:1027–1037.

[41]

Liu, G.,Zhang, R.,Li, S.,Ullah, R.,Yang, F.,Wang, Z.,Guo, W.,You, M.,Li, B.,Xie, C., et al. (2023). TaMADS29 interacts with TaNF-YB1 to synergistically regulate early grain development in bread wheat. Sci. China: Life Sci. 66:1647–1664.

[42]

Liu, G.Y.,Wu, Y.F.,Xu, M.J.,Gao, T.,Wang, P.F.,Wang, L.N.,Guo, T.C., and Kang, G.Z. (2016). Virus-induced gene silencing identifies an important role of the TaRSR1 transcription factor in starch synthesis in bread wheat. Int. J. Mol. Sci. 17:1557.

[43]

Liu, Y.C.,Hou, J.,Wang, X.L.,Li, T.,Majeed, U.,Hao, C.Y., and Zhang, X.Y. (2020). The NAC transcription factor NAC019-A1 is a negative regulator of starch synthesis in wheat developing endosperm. J. Exp. Bot. 73:3417–3430.

[44]

Lv, S.W.,Wu, W.G.,Wang, M.H.,Meyer, R.S.,Ndjiondjop, M.N.,Tan, L.B.,Zhou, H.Y.,Zhang, J.W.,Fu, Y.C.,Cai, H.W., et al. (2018). Genetic control of seed shattering during African rice domestication. Nat. Plants 4:331–337.

[45]

Lyu, J.,Huang, L.,Zhang, S.,Zhang, Y.,He, W.,Zeng, P.,Zeng, Y.,Huang, G.,Zhang, J.,Ning, M., et al. (2020). Neo-functionalization of a Teosintebranched 1 homologue mediates adaptations of upland rice. Nat. Commun. 11:725.

[46]

Ma, L.,Li, T.,Hao, C.Y.,Wang, Y.Q.,Chen, X.H., and Zhang, X.Y. (2016). TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnol. J. 14:1269–1280.

[47]

Maraña, C.,García-Olmedo,F., and Carbonero, P. (1990). Differential expression of two types of sucrose synthase-encoding genes in wheat in response to anaerobiosis, cold shock and light. Gene 88:167–172.

[48]

Mishra, A.,Singh, A.,Sharma, M.,Kumar, P., and Roy, J. (2016). Development of EMS-induced mutation population for amylose and resistant starch variation in bread wheat (Triticum aestivum L.) and identification of candidate genes responsible for amylose variation. BMC Plant Biol. 16:217.

[49]

McMaugh, S.J.,Thistleton, J.L.,Anschaw, E.,Luo, J.X.,Konik-Rose, C.,Wang, H.,Huang, M.,Larroque, O.,Regina, A.,Jobling, S.A., et al. (2014). Suppression of starch synthase I expression affects the granule morphology and granule size and fine structure of starch in wheat endosperm. J. Exp. Bot. 65:2189–2201.

[50]

Murai, K. (2013). Homeotic genes and the ABCDE model for floral organ formation in wheat. Plants 2:379–395.

[51]

Nishi, A.,Nakamura, Y.,Tanaka, N., and Satoh, H. (2001). Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol. 127:459–472.

[52]

Ohmori, Y.,Toriba, T.,Nakamura, H.,Ichikawa, H., and Hirano, H.Y. (2011). Temporal and spatial regulation of DROOPING LEAF gene expression that promotes midrib formation in rice. Plant J. 65:77–86.

[53]

Peng, M.,Gao, M.,Abdel-Aal, E.S.M.,Hucl, P., and Chibbar, R.N. (1999). Separation and characterization of A-and B-type starch granules in wheat endosperm. Cereal Chem. 76:375–379.

[54]

Peng, M.,Gao, M.,Båga, M.,Hucl, P., and Chibbar, R.N. (2000). Starch-branching enzymes preferentially associated with A-type starch granules in wheat endosperm. Plant Physiol. 124:265–272.

[55]

Ragaee, S., and Abdel-Aal, E.S.M. (2006). Pasting properties of starch and protein in selected cereals and quality of their food products. Food Chem. 95:9–18.

[56]

Schleucher, J.,Vanderveer, P.J., and Sharkey, T.D. (1998). Export of carbon from chloroplasts at night. Plant Physiol. 118:1439–1445.

[57]

Shamimuzzaman, M., and Vodkin, L. (2013). Genome-wide identification of binding sites for NAC and YABBY transcription factors and co-regulated genes during soybean seedling development by ChIP-Seq and RNA-Seq. BMC Genomics 14:477.

[58]

Song, Y.H.,Luo, G.B.,Shen, L.S.,Yu, K.,Yang, W.L.,Li, X.,Sun, J.Z.,Zhan, K.H.,Cui, D.Q.,Liu, D.C., et al. (2020). TubZIP28, a novel bZIP family transcription factor from Triticum urartu, and TabZIP28, its homolog from Triticum aestivum, enhance starch synthesis in wheat. New Phytol. 226:1384–1398.

[59]

Strable, J., and Vollbrecht, E. (2019). Maize YABBY genes drooping leaf1 and drooping leaf2 regulate floret development and floral meristem determinacy. Development 146:171181.

[60]

Sun, Q.,Gong, M.,Li, Y., and Xiong, L. (2014). Effect of dry heat treatment on the physicochemical properties and structure of proso millet flour and starch. Carbohydr. Polym. 110:128–134.

[61]

Toyokawa, H.,Rubenthaler, G.L.,Powers, J.R., and Schanus, E.G. (1989). Japanese noodle qualities. II. Starch components. Cereal Chem. 66:387–391.

[62]

Tang, H.,Mitsunaga, T., and Kawamura, Y. (2006). Molecular arrangement in blocklets and starch granule architecture. Carbohydr. Polym. 63:555–560.

[63]

Tian, Y.,Sang, W.,Liu, P.,Liu, J.,Xiang, J.,Cui, F.,Xu, H.,Han, X.,Nie, Y.,Kong, D., et al. (2022). Genome-wide association study for starch pasting properties in Chinese spring wheat. Front. Genet. 13:830644.

[64]

Wei, X.J.,Jiao, G.A.,Lin, H.Y.,Sheng, Z.H.,Shao, G.N.,Xie, L.H.,Tang, S.Q.,Xu, Q.G., and Hu, P.S. (2017). GRAIN INCOMPLETE FILLING 2 regulates grain filling and starch synthesis during rice caryopsis development. J. Integr. Plant Biol. 59:134–153.

[65]

Wang, J.,Zhang, H.,Wang, Y.,Meng, S.,Liu, Q.,Li, Q.,Zhao, Z.,Liu, Q., and Wei, C. (2024). Regulatory loops between rice transcription factors OsNAC25 and OsNAC20/26 balance starch synthesis. Plant Physiol. 195:1365–1381.

[66]

Wang, J.C.,Xu, H.,Zhu, Y.,Liu, Q.Q., and Cai, X.L. (2013). OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. J. Exp. Bot. 64:3453–3466.

[67]

Wang, W.X.,Wang, Z.H.,Li, X.T.,Ni, Z.F.,Hu, Z.R.,Xin, M.M.,Peng, H.R.,Yao, Y.Y.,Sun, Q.X., and Guo, W.L. (2020). SnpHub: An easy-to-set-up web server framework for exploring large-scale genomic variation data in the post-genomic era with applications in wheat. Gigascience 9: giaa060.

[68]

Xie, L.,Liu, S.,Zhang, Y.,Tian, W.,Xu, D.,Li, J.,Luo, X.,Li, L.,Bian, Y.,Li, F., et al. (2023). Efficient proteome-wide identification of transcription factors targeting Glu-1: A case study for functional validation of TaB3-2A1 in wheat. Plant Biotechnol. J. 21:1952–1965.

[69]

Yamaguchi, T.,Nagasawa, N.,Kawasaki, S.,Matsuoka, M.,Nagato, Y., and Hirano, H.Y. (2004). The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509.

[70]

Yang, C.,Ma, Y.M., and Li, J.X. (2016). The rice YABBY4 gene regulates plant growth and development through modulating the gibberellin pathway. J. Exp. Bot. 67:5545–5556.

[71]

Yang, F.,Chen, Y.,Tong, C.,Huang, Y.,Xu, F.,Li, K.,Corke, H.,Sun, M., and Bao, J. (2014). Association mapping of starch physicochemical properties with starch synthesis-related gene markers in nonwaxy rice (Oryza Sativa L.). Mol. Breed. 34:1–17.

[72]

Yang, T.,Guo, L.X.,Ji, C.,Wang, H.H.,Wang, J.C.,Zheng, X.X.,Xiao, Q., and Wu, Y.R. (2021). The B3 domain-containing transcription factor ZmABI19 coordinates expression of key factors required for maize seed development and grain filling. Plant Cell 33:104–128.

[73]

Yang, Y.,Gao, T.,Xu, M.J.,Dong, J.,Li, H.X.,Wang, P.F.,Li, G.Z.,Guo, T.C.,Kang, G.Z., and Wang, Y.H. (2017). Functional analysis of a wheat AGPase plastidial small subunit with a truncated transit peptide. Molecules 22:386.

[74]

Yuan, S.S.,Fan, P.,Zhang, D.D.,Liu, H.T.,Wang, P.F.,Guo, T.C.,Wang, Y.H., and Kang, G.Z. (2023). JAZ1 gene regulates starch biosynthesis and changes physicochemical properties in wheat grains. Food Biosci. 56:103259.

[75]

Yun, S.H.,Quail, K., and Moss, R. (1996). Physicochemical properties of Australian wheat flours for white salted noodles. J. Cereal Sci. 23:181–189.

[76]

Zaret, K.S., and Carroll, J.S. (2011). Pioneer transcription factors: Establishing competence for gene expression. Gene Dev. 25:2227–2241.

[77]

Zhang, R.,An, K.,Gao, Y.,Zhang, Z.,Zhang, X.,Zhang, X.,Rossi, V.,Cao, Y.,Xiao, J.,Xin, M., et al. (2024). The transcription factor CAMTA2 interacts with the histone acetyltransferase GCN5 and regulates grain weight in wheat. Plant Cell 25: koae261.

[78]

Zhang, Z.,Dong, J.,Ji, C.,Wu, Y., and Messing, J. (2019). NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proc. Natl. Acad. Sci. U.S.A. 116:11223–11228.

[79]

Zhao, L.,Chen, J.,Zhang, Z.,Wu, W.,Lin, X.,Gao, M.,Yang, Y.,Zhao, P.,Xu, S.,Yang, C., et al. (2024). Deciphering the transcriptional regulatory network governing starch and storage protein biosynthesis in wheat for breeding improvement. Adv. Sci. (Weinh) 28: e2401383.

[80]

Zhao, W.,Su, H.Y.,Song, J.,Zhao, X.Y., and Zhang, X.S. (2006). Ectopic expression of TaYAB1, a member of YABBY gene family in wheat, causes the partial abaxialization of the adaxial epidermises of leaves and arrests the development of shoot apical meristem in Arabidopsis. Plant Sci. 170:364–371.

[81]

Zhao, X.Y.,Xie, H.T.,Chen, Y.B.,Wang, S.S., and Zhang, X.S. (2012). Ectopic expression of TaYAB2, a member of YABBY gene family in wheat, causes partial abaxialization of adaxial epidermises of leaves in Arabidopsis. Acta Agron. Sin. 38:2042–2051.

[82]

Zhu, F., and Wang, S. (2014). Physicochemical properties, molecular structure, and uses of sweet potato starch. Trends Food Sci. Technol. 36:68–78.

[83]

Zhu, S.,Wang, J.,Cai, M.,Zhang, H.,Wu, F.,Xu, Y.,Li, C.,Cheng, Z.,Zhang, X.,Guo, X., et al. (2017). The OsHAPL1-DTH8-Hd1 complex functions as the transcription regulator to repress heading date in rice. J. Exp. Bot. 68:553–568.

[84]

Zhang, J.,Zhang, Z.,Zhang, R.,Yang, C.,Zhang, X.,Chang, S.,Chen, Q.,Rossi, V.,Zhao, L.,Xiao, J., et al. (2024). Type I MADS-box transcription factorTaMADS-GS regulates grain size by stabilizing cytokinin signalling duringendosperm cellularization in wheat. Plant Biotechnol. J. 22:200–215.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/