CBL1/CIPK23 phosphorylates tonoplast sugar transporter TST2 to enhance sugar accumulation in sweet orange (Citrus sinensis)

Mengdi Li , Zuolin Mao , Zeqi Zhao , Siyang Gao , Yanrou Luo , Ziyan Liu , Xiawei Sheng , Xiawan Zhai , Ji-Hong Liu , Chunlong Li

Journal of Integrative Plant Biology ›› 2025, Vol. 67 ›› Issue (2) : 327 -344.

PDF
Journal of Integrative Plant Biology ›› 2025, Vol. 67 ›› Issue (2) : 327 -344. DOI: 10.1111/jipb.13812
Research Article

CBL1/CIPK23 phosphorylates tonoplast sugar transporter TST2 to enhance sugar accumulation in sweet orange (Citrus sinensis)

Author information +
History +
PDF

Abstract

Fruit taste quality is greatly influenced by the content of soluble sugars, which are predominantly stored in the vacuolar lumen. However, the accumulation and regulation mechanisms of sugars in most fruits remain unclear. Recently, we established the citrus fruit vacuole proteome and discovered the major transporters localized in the vacuole membrane. Here, we demonstrated that the expression of tonoplast sugar transporter 2 (CsTST2) is closely associated with sugar accumulation during sweet orange (Citrus sinensis) ripening. It was further demonstrated that CsTST2 had the function of transporting hexose and sucrose into the vacuole. Overexpression of CsTST2 resulted in an elevation of sugar content in citrus juice sac, calli, and tomato fruit, whereas the downregulation of its expression led to the reduction in sugar levels. CsTST2 was identified as interacting with CsCIPK23, which binds to the upstream calcium signal sensor protein CsCBL1. The phosphorylation of the three serine residues (Ser277, Ser337, and Ser354) in the loop region of CsTST2 by CsCIPK23 is crucial for maintaining the sugar transport activity of CsTST2. Additionally, the expression of CsCIPK23 is positively correlated with sugar content. Genetic evidence further confirmed that calcium and CsCIPK23-mediated increase in sugar accumulation depends on CsTST2 and its phosphorylation level. These findings not only unveil the functional mechanism of CsTST2 in sugar accumulation, but also explore a vital calcium signal regulation module of CsCBL1/CIPK23 for citrus sweetness quality.

Keywords

citrus / CsCBL1/CIPK23 / phosphorylation / tonoplast sugar transporter / vacuole

Cite this article

Download citation ▾
Mengdi Li, Zuolin Mao, Zeqi Zhao, Siyang Gao, Yanrou Luo, Ziyan Liu, Xiawei Sheng, Xiawan Zhai, Ji-Hong Liu, Chunlong Li. CBL1/CIPK23 phosphorylates tonoplast sugar transporter TST2 to enhance sugar accumulation in sweet orange (Citrus sinensis). Journal of Integrative Plant Biology, 2025, 67(2): 327-344 DOI:10.1111/jipb.13812

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Batistic, O.,Waadt, R.,Steinhorst, L.,Held, K., and Kudla, J. (2010). CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores. Plant J. 61:211–222.

[2]

Batistic, O.,Sorek, N.,Schültke, S.,Yalovsky, S., and Kudla, J. (2008). Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis. Plant Cell 20:1346–1362.

[3]

Chen, T.,Zhang, Z.,Li, B.,Qin, G., and Tian, S. (2021). Molecular basis for optimizing sugar metabolism and transport during fruit development. aBIOTECH 2:330–340.

[4]

De Angeli, A.,Baetz, U.,Francisco, R.,Zhang, J.B.,Chaves, M.M., and Regalado, A. (2013). The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera. Planta 238:283–291.

[5]

Deng, J.,Yang, X.,Sun, W.,Miao, Y.,He, L., and Zhang, X. (2020). The calcium sensor CBL2 and Its interacting kinase CIPK6 are involved in plant sugar homeostasis via interacting with tonoplast sugar transporter TST2. Plant Physiol. 183:236–249.

[6]

Feng, G.Z.,Wu, J.X.,Xu, Y.H.,Lu, L.Q., and Yi, H.L. (2021). High-spatiotemporal-resolution transcriptomes provide insights into fruit development and ripening in Citrus sinensis. Plant Biotechnol. J. 19:1337–1353.

[7]

Gill, R.A.,Ahmar, S.,Ali, B.,Saleem, M.H.,Khan, M.U.,Zhou, W., and Liu, S. (2021). The role of membrane transporters in plant growth and development, and abiotic stress tolerance. Int. J. Mol. Sci. 22:12792–12817.

[8]

Goldenberg, L.,Yaniv, Y.,Porat, R., and Carmi, N. (2017). Mandarin fruit quality: A review. J. Sci. Food. Agric. 98:18–26.

[9]

Gora, P.J.,Reinders, A., and Ward, J.M. (2012). A novel fluorescent assay for sucrose transporters. Plant Methods 8:13–19.

[10]

Hashimoto, K.,Eckert, C.,Anschutz, U.,Scholz, M.,Held, K.,Waadt, R.,Reyer, A.,Hippler, M.,Becker, D., and Kudla, J. (2012). Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL-interacting protein kinases (CIPKs) is required for full activity of CBL-CIPK complexes toward their target proteins. J. Biol. Chem. 287:7956–7968.

[11]

Jiang, Y.-T.,Yang, L.-H.,Ferjani, A., and Lin, W.-H. (2021). Multiple functions of the vacuole in plant growth and fruit quality. Mol. Hortic. 1:4.

[12]

Ju, C.,Zhang, Z.,Deng, J.,Miao, C.,Wang, Z.,Wallrad, L.,Javed, L.,Fu, D.,Zhang, T.,Kudla, J., et al. (2022). Ca2+-dependent successive phosphorylation of vacuolar transporter MTP8 by CBL2/3-CIPK3/9/26 and CPK5 is critical for manganese homeostasis in Arabidopsis. Mol. Plant 15:419–437.

[13]

Jung, B.,Ludewig, F.,Schulz, A.,Meißner, G.,Wöstefeld, N.,Flügge, U.-I.,Pommerrenig, B.,Wirsching, P.,Sauer, N.,Koch, W., et al. (2015). Identification of the transporter responsible for sucrose accumulation in sugar beet taproots. Nat. Plants 1:14001.

[14]

Katuuramu, D.N.,Levi, A., and Wechter, W.P. (2023). Genome-wide association study of soluble solids content, flesh color, and fruit shape in citron watermelon. Plant Genome 16: e20391.

[15]

Kuang, L.Q.,Chen, S.W.,Guo, Y., and Ma, H.Q. (2019). Quantitative proteome analysis reveals changes in the protein landscape during grape berry development with a focus on vacuolar transport proteins. Front. Plant Sci. 10:641.

[16]

Kuang, L.Q.,Chen, S.W.,Guo, Y.,Scheuring, D.,Flaishman, M.A., and Ma, H.Q. (2022). Proteome analysis of vacuoles isolated from Fig (Ficus carica L.) flesh during fruit development. Plant Cell Physiol. 63:785–801.

[17]

Kudla, J., and Bock, R. (2016). Lighting the way to protein-protein interactions: Recommendations on best practices for bimolecular fluorescence complementation analyses. Plant Cell 28:1002–1008.

[18]

Li, C.L.,Meng, D.,Pineros, M.A.,Mao, Y.X.,Dandekar, A.M., and Cheng, L.L. (2020a). A sugar transporter takes up both hexose and sucrose for sorbitol-modulated in vitro pollen tube growth in apple. Plant Cell 32:449–469.

[19]

Li, C.L.,Dougherty, L.,Coluccio, A.E.,Meng, D.,El-Sharkawy, I.,Borejsza-Wysocka, E.,Liang, D.,Piñeros, M.A.,Xu, K., and Cheng, L. (2020b). Apple ALMT9 requires a conserved C-terminal domain for malate transport underlying fruit acidity. Plant Physiol. 182:992–1006.

[20]

Li, C.L.,Krishnan, S.,Zhang, M.,Hu, D.,Meng, D.,Riedelsberger, J.,Dougherty, L.,Xu, K.,Piñeros, M.A., and Cheng, L. (2024). Alternative splicing underpins the ALMT9 transporter function for vacuolar malic acid accumulation in apple. Adv. Sci. 11: e2310159.

[21]

Li, J.,Zhu, R.,Zhang, M.,Cao, B.,Li, X.,Song, B.,Liu, Z., and Wu, J. (2023a). Natural variations in the PbCPK28 promoter regulate sugar content through interaction with PbTST4 and PbVHA-A1 in pear. Plant J. 114:124–141.

[22]

Li, M.J.,Li, H.Y.,Zhu, Q.D.,Liu, D.,Li, Z.,Chen, H.F.,Luo, J.S.,Gong, P.,Abdelbagi M I., and Zhang, Z.H. (2023b). Knockout of the sugar transporter OsSTP15 enhances grain yield by improving tiller number due to increased sugar content in the shoot base of rice (Oryza sativa L.). New Phytol. 241:1250–1265.

[23]

Liu, Z.,Mao, Z.,Li, M.,Cai, C.,Wang, Y.,Liu, J.H., and Li, C. (2023). Vacuole: A repository to control fruit flavor quality. Fruit Res 3:12.

[24]

Luan, S. (2009). The CBL-CIPK network in plant calcium signaling. Trends Plant Sci. 14:37–42.

[25]

Luan, S., and Wang, C. (2021). Calcium signaling mechanisms across kingdoms. Annu. Rev. Cell Dev. Biol. 37:311–340.

[26]

Ma, L.,Ye, J.,Yang, Y.,Lin, H.,Yue, L.,Luo, J.,Long, Y.,Fu, H.,Liu, X.,Zhang, Y., et al. (2019). The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress. Dev. Cell 48:697–709.

[27]

Ma, Q.J.,Sun, M.H.,Lu, J.,Kang, H.,You, C.X., and Hao, Y.J. (2018a). An apple sucrose transporter MdSUT2.2 is a phosphorylation target for protein kinase MdCIPK22 in response to drought. Plant Biotechnol. J. 17:625–637.

[28]

Ma, Q.J.,Sun, M.H.,Kang, H.,Lu, J.,You, C.X., and Hao, Y.J. (2018b). A CIPK protein kinase targets sucrose transporter MdSUT2.2 at Ser254 for phosphorylation to enhance salt tolerance. Plant Cell Environ. 42:918–930.

[29]

Mao, Z.L.,Wang, Y.,Li, M.D.,Zhang, S.H.,Zhao, Z.Q.,Xu, Q.,Liu, J.H., and Li, C.L. (2024). Vacuolar proteomic analysis reveals tonoplast transporters for accumulation of citric acid and sugar in citrus fruit. Hortic. Res. 11: uhad249.

[30]

Martinoia, E. (2018). Vacuolar transporters-Companions on a Longtime Journey. Plant Physiol. 176:1384–1407.

[31]

Martinoia, E.,Maeshima, M., and Neuhaus, H.E. (2007). Vacuolar transporters and their essential role in plant metabolism. J. Exp. Bot. 58:83–102.

[32]

Matsui, M.,Yamada, K.,Osakabe, Y., and Yamaguchi-Shinozaki, K. (2017). A C-terminal motif contributes to the plasma membrane localization of Arabidopsis STP transporters. PLoS One 12: e0186326.

[33]

Moniruzzaman, M.,Zhong, Y.,Huang, Z.,Yan, H.,Yuanda, L.,Jiang, B., and Zhong, G. (2021). Citrus cell suspension culture establishment, maintenance, efficient transformation and regeneration to complete transgenic plant. Plants 10:664.

[34]

Nour-Eldin, H.H.,Hansen, B.G.,Norholm, M.H.H.,Jensen, J.K., and Halkier, B.A. (2006). Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res. 34: e122.

[35]

Shitan, N., and Yazaki, K. (2020). Dynamism of vacuoles toward survival strategy in plants. Biochim. Biophys. Acta, Biomembr. 1862:183127.

[36]

Patzke, K.,Prananingrum, P.,Klemens, P.A.W.,Trentmann, O.,Rodrigues, C.M.,Keller, I.,Fernie, A.R.,Geigenberger, P.,Bölter, B.,Lehmann, M., et al. (2019). The plastidic sugar transporter pSuT influences flowering and affects cold responses. Plant Physiol. 179:569–587.

[37]

Peng, Q.,Wang, L.,Ogutu, C.,Liu, J.J.,Liu, L.,Mollah, M.D.A., and Han, Y.P. (2020). Functional analysis reveals the regulatory role of PpTST1 encoding tonoplast sugar transporter in sugar accumulation of peach fruit. Int. J. Mol. Sci. 21:1112.

[38]

Ren, Y.,Guo, S.,Zhang, J.,He, H.,Sun, H.,Tian, S.,Gong, G.,Zhang, H.,Levi, A.,Tadmor, Y., et al. (2018). A tonoplast sugar transporter underlies a sugar accumulation QTL in watermelon. Plant Physiol. 176:836–850.

[39]

Ródenas, R., and Vert, G. (2021). Regulation of root nutrient transporters by CIPK23: “One kinase to rule them all”. Plant Cell Physiol. 62:553–563.

[40]

Sasaki, T.,Tsuchiya, Y.,Ariyoshi, M.,Nakano, R.,Ushijima, K.,Kubo, Y.,Mori, I.C.,Higashiizumi, E.,Galis, I., and Yamamoto, Y. (2016). Two members of the aluminum-activated malate transporter family, SlALMT4 and SlALMT5, are expressed during fruit development, and the overexpression of alters organic acid contents in seeds in tomato (Solanum lycopersicum). Plant Cell Physiol. 57:2367–2379.

[41]

Shimada, T.,Takagi, J.,Ichino, T.,Shirakawa, M., and Hara-Nishimura, I. (2018). Plant vacuoles. Annu. Rev. Plant Bio. 69:123–145.

[42]

Song, J.,Sun, P.,Kong, W.,Xie, Z.,Li, C., and Liu, J.H. (2022). SnRK2.4-mediated phosphorylation of ABF2 regulates ARGININE DECARBOXYLASE expression and putrescine accumulation under drought stress. New Phytol. 238:216–236.

[43]

Straub, T.,Ludewig, U., and Neuhäuser, B. (2017). The kinase CIPK23 inhibits ammonium transport in Arabidopsis thaliana. Plant Cell 29:409–422.

[44]

Sun, L.,Wang, J.,Lian, L.,Song, J.,Du, X.,Liu, W.,Zhao, W.,Yang, L.,Li, C.,Qin, Y., et al. (2022). Systematic analysis of the sugar accumulation mechanism in sucrose and hexos accumulating cherry tomato fruits. BMC Plant Biol. 22:303.

[45]

Tang, R.-J.,Wang, C.,Li, K., and Luan, S. (2020). The CBL-CIPK calcium signaling network: Unified paradigm from 20 years of discoveries. Trends Plant Sci. 25:604–617.

[46]

Tian, W.,Wang, C.,Gao, Q.F.,Li, L.G., and Luan, S. (2020). Calcium spikes, waves and oscillations in plant development and biotic interactions. Nat. Plants 6:750–759.

[47]

Wang, Z.Q.,Zhang, Y.T.,Liu, Y.S.,Fu, D.L.,You, Z.,Huang, P.P.,Gao, H.L.,Zhang, Z.Q., and Wang, C. (2023). Calcium-dependent protein kinases CPK21 and CPK23 phosphorylate and activate the iron-regulated transporter IRT1 to regulate iron deficiency in Arabidopsis. Sci. China: Life Sci. 66:2646–2662.

[48]

Weiss, J., and Hiltbrand, B. (1985). Functional compartmentation of glycolytic versus oxidative-metabolism in isolated rabbit heart. J. Clin. Invest. 75:436–447.

[49]

Xu, Q.,Chen, L.L.,Ruan, X.A.,Chen, D.J.,Zhu, A.D.,Chen, C.L.,Bertrand, D.,Jiao, W.B.,Hao, B.H.,Lyon, M.P., et al. (2013). The draft genome of sweet orange (Citrus sinensis). Nat. Genet. 45:59–66.

[50]

Yaroshko, O.,Pasternak, T.,Larriba, E., and Pérez-Pérez, J.M. (2023). Optimization of callus induction and shoot regeneration from tomato cotyledon explants. Plants 12:2942.

[51]

Ye, J.,Wang, X.,Hu, T.X.,Zhang, F.X.,Wang, B.,Li, C.X.,Yang, T.X.,Li, H.X.,Lu, Y.G.,Giovannoni, J.J., et al. (2017). An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance. Plant Cell 29:2249–2268.

[52]

Zhang, M.,Xu, X.,Zheng, Y.,Zhang, Y.,Deng, X.,Luo, S.,Wu, Q.,Xu, J., and Zhang, S. (2021a). Expression of a plastid-localized sugar transporter in the suspensor is critical to embryogenesis. Plant Physiol. 185:1021–1038.

[53]

Zhang, X.,Feng, C.,Wang, M.,Li, T.,Liu, X., and Jiang, J. (2021b). Plasma membrane-localized SlSWEET7a and SlSWEET14 regulate sugar transport and storage in tomato fruits. Hortic. Res. 8:186.

[54]

Zhang, Y.,Zhu, J.,Khan, M.,Wang, Y.,Xiao, W.,Fang, T.,Qu, J.,Xiao, P.,Li, C.L., and Liu, J.H. (2023). Transcription factors ABF4 and ABR1 synergistically regulate amylase-mediated starch catabolism in drought tolerance. Plant Physiol. 191:591–609.

[55]

Zhao, Z.Q.,Li, M.D.,Xu, W.W.,Liu, J.-H., and Li, C.L. (2022). Genome-wide identification of NRT gene family and expression analysis of nitrate transporters in response to salt stress in Poncirus trifoliata. Genes 13:1115.

[56]

Zhou, Y.,He, W.Z.,Zheng, W.L.,Tan, Q.L.,Xie, Z.Z.,Zheng, C.S., and Hu, C.X. (2018). Fruit sugar and organic acid were significantly related to fruit Mg of six citrus cultivars. Food Chem. 259:278–285.

[57]

Zhu, C.A.,Jing, B.Y.,Lin, T.,Li, X.Y.,Zhang, M.,Zhou, Y.H.,Yu, J.Q., and Hu, Z.J. (2024). Phosphorylation of sugar transporter TST2 by protein kinase CPK27 enhances drought tolerance in tomato. Plant Physiol. 2:1005–1024.

[58]

Zhu, L.,Li, B.,Wu, L.,Li, H.,Wang, Z.,Wei, X.,Ma, B.,Zhang, Y.,Ma, F.,Ruan, Y.-L., et al. (2021). MdERDL6-mediated glucose efflux to the cytosol promotes sugar accumulation in the vacuole through up-regulating TSTs in apple and tomato. Proc. Natl. Acad. Sci. U.S.A. 118: e2022788118.

[59]

Zhu, L.,Li, Y.,Wang, C.,Wang, Z.,Cao, W.,Su, J.,Peng, Y.,Li, B.,Ma, B.,Ma, F., et al. (2023). The SnRK2.3-AREB1-TST1/2 cascade activated by cytosolic glucose regulates sugar accumulation across tonoplasts in apple and tomato. Nat. Plants 9:951–964.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

222

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/