A novel C2H2-type zinc-finger transcription factor, CitZAT4, regulates ethylene-induced orange coloration in Satsuma mandarin flavedo (Citrus unshiu Marc.)

Quan Sun , Zhengchen He , Junli Ye , Ranran Wei , Di Feng , Yingzi Zhang , Lijun Chai , Yunjiang Cheng , Qiang Xu , Xiuxin Deng

Journal of Integrative Plant Biology ›› 2025, Vol. 67 ›› Issue (2) : 294 -310.

PDF
Journal of Integrative Plant Biology ›› 2025, Vol. 67 ›› Issue (2) : 294 -310. DOI: 10.1111/jipb.13778
Research Article

A novel C2H2-type zinc-finger transcription factor, CitZAT4, regulates ethylene-induced orange coloration in Satsuma mandarin flavedo (Citrus unshiu Marc.)

Author information +
History +
PDF

Abstract

Ethylene treatment promotes orange coloration in the flavedo of Satsuma mandarin (Citrus unshiu Marc.) fruit, but the corresponding regulatory mechanism is still largely unknown. In this study, we identified a C2H2-type zinc-finger transcription factor,CitZAT4, the expression of which was markedly induced by ethylene. CitZAT4 directly binds to the CitPSY promoter and activates its expression, thereby promoting carotenoid biosynthesis. Transient expression in Satsuma mandarin fruit and stable transformation of citrus calli showed that overexpressing of CitZAT4 inhibited CitLCYE expression, thus inhibiting α-branch yellow carotenoid (lutein) biosynthesis. CitZAT4 overexpression also enhanced the transcript levels of CitLCYB,CitHYD, and CitNCED2, promoting β-branch orange carotenoid accumulation. Molecular biochemical assays, including yeast one-hybrid (Y1H), electrophoretic mobility shift (EMSA), chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR), and luciferase (LUC) assays, demonstrated that CitZAT4 directly binds to the promoters of its target genes and regulates their expression. An ethylene response factor, CitERF061, which is induced by ethylene signaling, was found to directly bound to the CitZAT4 promoter and induced its expression, thus positively regulating CitZAT4-mediated orange coloration in citrus fruit. Together, our findings reveal that a CitZAT4-mediated transcriptional cascade is driven by ethylene via CitERF061, linking ethylene signaling to carotenoid metabolism in promoting orange coloration in the flavedo of Satsuma mandarin fruit. The molecular regulatory mechanism revealed here represents a significant step toward developing strategies for improving the quality and economic efficiency of citrus crops.

Keywords

α-branch carotenoid / β-branch carotenoid / CitZAT4 / ethylene / orange coloration / Satsuma mandarin

Cite this article

Download citation ▾
Quan Sun, Zhengchen He, Junli Ye, Ranran Wei, Di Feng, Yingzi Zhang, Lijun Chai, Yunjiang Cheng, Qiang Xu, Xiuxin Deng. A novel C2H2-type zinc-finger transcription factor, CitZAT4, regulates ethylene-induced orange coloration in Satsuma mandarin flavedo (Citrus unshiu Marc.). Journal of Integrative Plant Biology, 2025, 67(2): 294-310 DOI:10.1111/jipb.13778

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alonso Jose, M., and Stepanova Anna, N. (2004). The ethylene signaling pathway. Science 306:1513–1515.

[2]

An, J.P.,Wang, X.F.,Li, Y.Y.,Song, L.Q.,Zhao, L.L.,You, C.X., and Hao, Y.J. (2018). EIN3-LIKE1, MYB1, and ETHYLENE RESPONSE FACTOR3 act in a regulatory loop that synergistically modulates ethylene biosynthesis and anthocyanin accumulation. Plant Physiol. 178:808–823.

[3]

Asako, I.,Kazuoka, T.,Torikai, S.,Kikuchi, H., and Oeda, K. (2000). A zinc finger protein RHL41 mediates the light acclimatization response in Arabidopsis. Plant J. 24:191–203.

[4]

Chenge-Espinosa, M.,Cordoba, E.,Romero-Guido, C.,Toledo-Ortiz, G., and León, P. (2018). Shedding light on the methylerythritol phosphate (MEP)-pathway: Long hypocotyl 5 (HY5)/phytochrome-interacting factors (PIFs) transcription factors modulating key limiting steps. Plant J. 96:828–841.

[5]

Ding, Y.,Chang, J.,Ma, Q.,Chen, L.,Liu, S.,Jin, S.,Han, J.,Xu, R.,Zhu, A.,Guo, J., et al. (2015). Network analysis of postharvest senescence process in citrus fruits revealed by transcriptomic and metabolomic profiling. Plant Physiol. 168:357–376.

[6]

Fanciullino, A.L.,Cercós, M.,Dhuique-Mayer, C.,Froelicher, Y.,Talón, M.,Ollitrault, P., and Morillon, R. (2008). Changes in carotenoid content and biosynthetic gene expression in juice sacs of four orange varieties (Citrus sinensis) differing in flesh fruit color. J. Agric. Food Chem. 56:3628–3638.

[7]

Feng, G.,Wu, J.,Xu, Y.,Lu, L., and Yi, H. (2021). High-spatiotemporal-resolution transcriptomes provide insights into fruit development and ripening in citrus sinensis. Plant Biotechnol. J. 19:1337–1353.

[8]

Fiedor, J., and Burda, K. (2014). Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6:466–488.

[9]

Franco-Zorrilla José M.,López-Vidriero, I.,Carrasco José L.,Godoy, M.,Vera, P., and Solano, R. (2014). DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc. Natl. Acad. Sci. U.S.A. 111,2367-2372.

[10]

Fraser, P.D., and Bramley, P.M. (2004). The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43:228–265.

[11]

Fujii, H.,Shimada, T.,Sugiyama, A.,Nishikawa, F.,Endo, T.,Nakano, M.,Ikoma, Y.,Shimizu, T., and Omura, M. (2007). Profiling ethylene-responsive genes in mature mandarin fruit using a citrus 22K oligoarray. Plant Sci. 173:340–348.

[12]

Fujimoto, S.Y.,Ohta, M.,Usui, A.,Shinshi, H., and Ohme-Takagi, M. (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404.

[13]

Gangappa, S.N., and Botto, J.F. (2016). The multifaceted roles of HY5 in plant growth and development. Mol. Plant 9:1353–1365.

[14]

Han, G.,Lu, C.,Guo, J.,Qiao, Z.,Sui, N.,Qiu, N., and Wang, B. (2020a). C2H2 zinc finger proteins: Master regulators of abiotic stress responses in plants. Front. Plant Sci. 11:115.

[15]

Han, G.,Wei, X.,Dong, X.,Wang, C.,Sui, N.,Guo, J.,Yuan, F.,Gong, Z.,Li, X.,Zhang, Y., et al. (2020b). Arabidopsis ZINC FINGER PROTEIN1 acts downstream of GL2 to repress root hair initiation and elongation by directly suppressing bHLH genes. Plant Cell 32:206–225.

[16]

Hoeberichts, F.A.,Van Der Plas, L.H.W., and Woltering, E.J. (2002). Ethylene perception is required for the expression of tomato ripening-related genes and associated physiological changes even at advanced stages of ripening. Postharvest. Biol. Technol. 26:125–133.

[17]

Kato, M.,Ikoma, Y.,Matsumoto, H.,Sugiura, M.,Hyodo, H., and Yano, M. (2004). Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiol. 134:824–837.

[18]

Kodaira, K.S.,Qin, F.,Tran, L.S.P.,Maruyama, K.,Kidokoro, S.,Fujita, Y.,Shinozaki, K., and Yamaguchi-Shinozaki, K. (2011). Arabidopsis Cys2/His2 zinc-finger proteins AZF1 and AZF2 negatively regulate abscisic acid-repressive and auxin-inducible genes under abiotic stress conditions. Plant Physiol. 157:742–756.

[19]

Lin, Z.,Zhong, S., and Grierson, D. (2009). Recent advances in ethylene research. J. Exp. Bot. 60:3311–3336.

[20]

Llorente, B.,D’Andrea, L.,Ruiz-Sola, M.A.,Botterweg, E.,Pulido, P.,Andilla, J.,Loza-Alvarez, P., and Rodriguez-Concepcion, M. (2016). Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism. Plant J. 85:107–119.

[21]

Lu, S.,Zhang, Y.,Zhu, K.,Yang, W.,Ye, J.,Chai, L.,Xu, Q., and Deng, X. (2018). The citrus transcription factor CsMADS6 modulates carotenoid metabolism by directly regulating carotenogenic genes. Plant Physiol. 176:2657–2676.

[22]

Lucchesi, A.A.,Zambon, S., and Montagnoli, A.C. (1983). Effects of (2-chloroethyl) phosphonic acid on leaf maturity of tobacco plants (Nicotiana tabacum L.). An. Esc. Super. Agric., “Luiz de Queiroz, ” Univ. Sao Paulo 41:203–220.

[23]

Ma, G.,Zhang, L.,Kato, M.,Yamawaki, K.,Kiriiwa, Y.,Yahata, M.,Ikoma, Y., and Matsumoto, H. (2012). Effect of blue and red LED light irradiation on β-cryptoxanthin accumulation in the flavedo of citrus fruits. J. Agric. Food Chem. 60:197–201.

[24]

Marty, I.,Bureau, S.,Sarkissian, G.,Gouble, B.,Audergon, J.M., and Albagnac, G. (2005). Ethylene regulation of carotenoid accumulation and carotenogenic gene expression in colour-contrasted apricot varieties (Prunus armeniaca). J. Exp. Bot. 56:1877–1886.

[25]

Matsumoto, H.,Ikoma, Y.,Kato, M.,Nakajima, N., and Hasegawa, Y. (2009). Effect of postharvest temperature and ethylene on carotenoid accumulation in the flavedo and juice sacs of satsuma mandarin (Citrus unshiu Marc.) fruit. J. Agric. Food Chem. 57:4724–4732.

[26]

Matsumoto, H.,Ikoma, Y.,Kato, M.,Kuniga, T.,Nakajima, N., and Yoshida, T. (2007). Quantification of carotenoids in citrus fruit by LC-MS and comparison of patterns of seasonal changes for carotenoids among citrus varieties. J. Agric. Food Chem. 55:2356–2368.

[27]

Nisar, N.,Li, L.,Lu, S.,Khin, Nay, C., and Pogson, B.J. (2015). Carotenoid metabolism in plants. Mol. Plant 8:68–82.

[28]

Nishikawa, K.,Okabayashi, H.,Mitiku, S.B., and Sawamura, M. (2002). Bitter and volatile compounds in ethylene-treated citrus grandis [L.] Osbeck Fruits. J. Jpn. Soc. Hortic. Sci. 71:292–296.

[29]

Picton, S.,Barton, S.L.,Bouzayen, M.,Hamilton, A.J., and Grierson, D. (1993). Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. Plant J. 3:469–481.

[30]

Rodrigo, M.J.,Alquezar, B., and Zacarías, L. (2006). Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck). J. Exp. Bot. 57:633–643.

[31]

Rodrigo, M.J., and Zacarias, L. (2007). Effect of postharvest ethylene treatment on carotenoid accumulation and the expression of carotenoid biosynthetic genes in the flavedo of orange (Citrus sinensis L. Osbeck) fruit. Postharvest. Biol. Technol. 43:14–22.

[32]

Rodriguez-Concepcion, M.,Avalos, J.,Bonet, M.L.,Boronat, A.,Gomez-Gomez, L.,Hornero-Mendez, D.,Limon, M.C.,Meléndez-Martínez, A.J.,Olmedilla-Alonso, B.,Palou, A., et al. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 70:62–93.

[33]

Romero, P.,Lafuente, M.T., and Rodrigo, M.J. (2019). A sweet orange mutant impaired in carotenoid biosynthesis and reduced ABA levels results in altered molecular responses along peel ripening. Sci. Rep. 9:9813.

[34]

Sakamoto, H.,Maruyama, K.,Sakuma, Y.,Meshi, T.,Iwabuchi, M.,Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 136:2734–2746.

[35]

Shi, H.,Wang, X.,Ye, T.,Chen, F.,Deng, J.,Yang, P.,Zhang, Y., and Chan, Z. (2014). The Cysteine2/Histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA6 modulates biotic and abiotic stress responses by activating salicylic acid-related genes and C-REPEAT-BINDING FACTOR genes in Arabidopsis. Plant Physiol. 165:1367–1379.

[36]

Sun, Q.,He, Y.,Ye, J.,Zheng, X.,Zhou, C.,Fu, A.,Wei, R.,Yin, Y.,Chai, L.,Xu, Q., et al. (2021). Storage with apple fruit to improve peel color and maintain freshness of Newhall navel orange. Sci. Hortic. (Amsterdam) 287:110246.

[37]

Sun, Q.,He, Z.,Wei, R.,Yin, Y.,Ye, J.,Chai, L.,Xie, Z.,Guo, W.,Xu, J.,Cheng, Y., et al. (2023). Transcription factor CsTT8 promotes fruit coloration by positively regulating methylerythritol 4-phosphate pathway and carotenoid biosynthesis pathway in citrus (Citrus spp.). Hortic. Res. 10: uhad199.

[38]

Sun, Q.,He, Z.,Wei, R.,Zhang, Y.,Ye, J.,Chai, L.,Xie, Z.,Guo, W.,Xu, J.,Cheng, Y., et al. (2024). The transcriptional regulatory module CsHB5-CsbZIP44 positively regulates abscisic acid-mediated carotenoid biosynthesis in citrus (Citrus spp.). Plant Biotechnol. J. 22:722–737.

[39]

Sun, T.,Yuan, H.,Cao, H.,Yazdani, M.,Tadmor, Y., and Li, L. (2018). Carotenoid metabolism in plants: The role of plastids. Mol. Plant 11:58–74.

[40]

Wang, D.R.,Yang, K.,Wang, X., and You, C.X. (2022a). A C2H2-type zinc finger transcription factor, MdZAT17, acts as a positive regulator in response to salt stress. J. Plant Physiol. 275:153737.

[41]

Wang, D.R.,Yang, K.,Wang, X.,Lin, X.L.,Rui, L.,Liu, H.F.,Liu, D.-D., and You, C.X. (2022b). Overexpression of MdZAT5, an C2H2-type zinc finger protein, regulates anthocyanin accumulation and salt stress response in apple calli and arabidopsis. Int. J. Mol. Sci. 23:1897.

[42]

Wang, Y.C.,Chuang, Y.C., and Hsu, H.W. (2008). The flavonoid, carotenoid and pectin content in peels of citrus cultivated in taiwan. Food Chem. 106:277–284.

[43]

Wu, J.,Xu, Z.,Zhang, Y.,Chai, L.,Yi, H., and Deng, X. (2014). An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus. J. Exp. Bot. 65:1651–1671.

[44]

Xu, C.J.,Fraser, P.D.,Wang, W.J., and Bramley, P.M. (2006). Differences in the carotenoid content of ordinary citrus and lycopene-accumulating mutants. J. Agric. Food Chem. 54:5474–5481.

[45]

Yang, J.,Liu, Y.,Yan, H.,Tian, T.,You, Q.,Zhang, L.,Xu, W., and Su, Z. (2018). PlantEAR: Functional analysis platform for plant EAR motif-containing proteins. Front. Genet. 9:590.

[46]

Yang, K.,An, J.P.,Li, C.Y.,Shen, X.N.,Liu, Y.J.,Wang, D.R.,Ji, X.L.,Hao, Y.J., and You, C.X. (2021). The apple C2H2-type zinc finger transcription factor MdZAT10 positively regulates JA-induced leaf senescence by interacting with MdBT2. Hortic. Res. 8:159.

[47]

Yanover, C., and Bradley, P. (2011). Large-scale characterization of peptide-MHC binding landscapes with structural simulations. Proc. Natl. Acad. Sci. U.S.A. 108,6981-6986.

[48]

Yuan, H.,Zhang, J.,Nageswaran, D., and Li, L. (2015). Carotenoid metabolism and regulation in horticultural crops. Hortic. Res. 2:15036.

[49]

Zhang, H.,Ni, L.,Liu, Y.,Wang, Y.,Zhang, A.,Tan, M., and Jiang, M. (2012). The C2H2-type zinc finger protein ZFP182 is involved in abscisic acid-induced antioxidant defense in rice. J. Integr. Plant Biol. 54:500–510.

[50]

Zhang, P., and Zhou, Z. (2019). Postharvest ethephon degreening improves fruit color, flavor quality and increases antioxidant capacity in ‘Eureka’ lemon (Citrus limon (L.) Burm. f. Sci. Hortic. (Amsterdam) 248:70–80.

[51]

Zhou, J.Y.,Sun, C.D.,Zhang, L.L.,Dai, X.,Xu, C.J., and Chen, K.S. (2010). Preferential accumulation of orange-colored carotenoids in Ponkan (Citrus reticulata) fruit peel following postharvest application of ethylene or ethephon. Sci. Hortic. (Amsterdam) 126:229–235.

[52]

Zhou, Z.,An, L.,Sun, L.,Zhu, S.,Xi, W.,Broun, P.,Yu, H., and Gan, Y. (2011). Zinc finger protein5 is required for the control of trichome initiation by acting upstream of zinc finger protein 8 in Arabidopsis. Plant Physiol. 157:673–682.

[53]

Zhu, F.,Luo, T.,Liu, C.,Wang, Y.,Yang, H.,Yang, W.,Zheng, L.,Xiao, X.,Zhang, M.,Xu, R., et al. (2017). An R2R3-MYB transcription factor represses the transformation of α-and β-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulate. New Phytol. 216:178–192.

[54]

Zhu, K.,Sun, Q.,Chen, H.,Mei, X.,Lu, S.,Ye, J.,Chai, L.,Xu, Q., and Deng, X. (2021). Ethylene activation of carotenoid biosynthesis by a novel transcription factor CsERF061. J. Exp. Bot. 72:3137–3154.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

199

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/