Transcriptional regulation of phospholipid transport in cotton fiber elongation by GhMYB30D04–GhHD1 interaction complex

Qingwei Song , Chuanhui Du , Yiyang Xu , Jin Wang , Min Lin , and Kaijing Zuo

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (11) : 2431 -2449.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (11) : 2431 -2449. DOI: 10.1111/jipb.13776
Research Article

Transcriptional regulation of phospholipid transport in cotton fiber elongation by GhMYB30D04–GhHD1 interaction complex

Author information +
History +
PDF

Abstract

Cotton fiber length is basically determined by well-coordinated gene expression and phosphatidylinositol phosphates (PIPs) accumulation during fiber elongation but the regulatory mechanism governing PIPs transport remains unknown. Here, we report a MYB transcription factor GhMYB30D04 in Gossypium hirsutum that promotes fiber elongation through modulating the expression of PIP transporter gene GhLTPG1. Knockout of GhMYB30D04 gene in cotton (KO) results in a reduction of GhLTPG1 transcripts with lower accumulation of PIPs, leading to shorter fibers and lower fiber yield. Conversely,GhMYB30D04 overexpression (GhMYB30D04-OE) causes richer PIPs and longer cotton fibers, mimicking the effects of exogenously applying PIPs on the ovules of GhMYB30D04-KO and wild type. Furthermore, GhMYB30D04 interacts with GhHD1, the crucial transcription factor of fiber initiation, to form an activation complex stabilized by PIPs, both of which upregulate GhLTPG1 expression. Comparative omics-analysis revealed that higher and extended expressions of LTPG1 in fiber elongation mainly correlate with the variations of the GhMYB30D04 gene between two cotton allotetraploids, contributing to longer fiber in G. babardense. Our work clarifies a mechanism by which GhHD1–GhMYB30D04 form a regulatory module of fiber elongation to tightly control PIP accumulation. Our work still has an implication that GhMYB30D04–GhHD1 associates with development transition from fiber initiation to elongation.

Keywords

cotton fiber / fiber cell elongation / MYB–HD-ZIP transcription complex / phospholipid transport / transcriptional regulation

Cite this article

Download citation ▾
Qingwei Song, Chuanhui Du, Yiyang Xu, Jin Wang, Min Lin, and Kaijing Zuo. Transcriptional regulation of phospholipid transport in cotton fiber elongation by GhMYB30D04–GhHD1 interaction complex. Journal of Integrative Plant Biology, 2024, 66(11): 2431-2449 DOI:10.1111/jipb.13776

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beasley, C.A., and Ting, I.P. (1973). The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules. Amer. J. Bot 60:130–139.

[2]

Bolger, A.M.,Lohse, M., and Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.

[3]

Champeyroux, C.,Stoof, C., and Rodriguez-Villalon, A. (2020). Signaling phospholipids in plant development: Small couriers determining cell fate. Curr. Opin. Plant Biol. 57:61–71.

[4]

Chen, M.,Yan, T.,Shen, Q.,Lu, X.,Pan, Q.,Huang, Y.,Tang, Y.,Fu, X.,Liu, M.,Jiang, W., et al. (2017). GLANDULAR TRICHOME-SPECIFIC WRKY 1 promotes artemisinin biosynthesis in Artemisia annua. New Phytol. 214:304–316.

[5]

Colin, L.A., and Jaillais, Y. (2020). Phospholipids across scales: Lipid patterns and plant development. Curr. Opin. Plant Biol. 53:1–9.

[6]

Deng, T.,Yao, H.,Wang, J.,Xue, H., and Zuo, K. (2016). GhLTPG1, a cotton GPI-anchored lipid transfer protein, regulates the transport of phosphatidylinositol monophosphates and cotton fiber elongation. Sci. Rep. 6:26829.

[7]

Dowler, S.,Kular, G., and Alessi, D.R. (2002). Protein lipid overlay assay. Sci. STKE 129: pl6.

[8]

Gietz, R.D. (2006). Yeast two-hybrid system screening. Methods Mol. Biol. 313:345–371.

[9]

Gou, J.Y.,Wang, L.J.,Chen, S.P.,Hu, W.L., and Chen, X.Y. (2007). Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res. 17:422–434.

[10]

Han, X.,Yang, Y.,Zhao, F.,Zhang, T., and Yu, X. (2020). An improved protein lipid overlay assay for studying lipid-protein interactions. Plant Methods 16:33.

[11]

He, S.,Sun, G.,Geng, X.,Gong, W.,Dai, P.,Jia, Y.,Shi, W.,Pan, Z.,Wang, J.,Wang, L., et al. (2021). The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nat. Genet. 53:916–924.

[12]

Heilmann, M., and Heilmann, I. (2015). Plant phosphoinositides-complex networks controlling growth and adaptation. Biochim. Biophys. Acta 1851:759–769.

[13]

Hellens, R.P.,Allan, A.C.,Friel, E.N.,Bolitho, K.,Grafton, K.,Templeton, M.D.,Karunairetnam, S.,Gleave, A.P., and Laing, W.A. (2005). Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13.

[14]

Hu, Y.,Chen, J.D.,Fang, L.,Zhang, Z.Y.,Ma, W.,Niu, Y.C.,Ju, L.Z.,Deng, J.Q.,Zhao, T.,Lian, J.M., et al. (2019). Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat. Genet. 51:73948.

[15]

Huang, G.,Huang, J.Q.,Chen, X.Y., and Zhu, Y.X. (2021). Recent advances and future perspectives in cotton research. Annu. Rev. Plant Biol. 17:437–462.

[16]

Huang, J.,Ghosh, R., and Bankaitis, V.A. (2016). Sec. 14-like phosphatidylinositol transfer proteins and the biological landscape of phosphoinositide signaling in plants. Biochim. Biophys. Acta 1861:1352–1364.

[17]

Ji, S.J.,Lu, Y.C.,Feng, J.X.,Wei, G.,Li, J.,Shi, Y.H.,Fu, Q.,Liu, D.,Luo, J.C., and Zhu, Y.X. (2003). Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res. 31:2534–2543.

[18]

Kim, H.,Lee, S.B.,Kim, H.J.,Min, M.K.,Hwang, I., and Suh, M.C. (2012). Characterization of glycosylphosphatidylinositol-anchored lipid transfer protein 2 (LTPG2) and overlapping function between LTPG/LTPG1 and LTPG2 in cuticular wax export or accumulation in Arabidopsis thaliana. Plant Cell Physiol. 53:1391–1403.

[19]

Kim, H.J., and Triplett, B.A. (2021). Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 127:1361–1366.

[20]

Lee, S.B.,Go, Y.S.,Bae, H.J.,Park, J.H.,Cho, S.H.,Cho, H.J.,Lee, D.S.,Park, O.K.,Hwang, I., and Suh, M.C. (2009). Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola. Plant Physiol. 150:42–54.

[21]

Li, F.,Fan, G.,Lu, C.,Xia, G.,Zou, C.,Kohel, R.J.,Ma, Z.,Shang, H.,Ma, X.,Wu, J., et al. (2015). Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat. Biotechnol. 33:524–530.

[22]

Li, J.,Wang, M.,Li, Y.,Zhang, Q.,Lindsey, K.,Daniell, H.,Jin, S., and Zhang, X. (2019). Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process. Plant Biotechnol. J. 17:435–450.

[23]

Liu, G.J.,Xiao, G.H.,Liu, N.J.,Liu, D.,Chen, P.S.,Qin, Y.M., and Zhu, Y.X. (2015). Targeted lipidomics studies reveal that linolenic acid promotes cotton fiber elongation by activating phosphatidylinositol and phosphatidylinositol monophosphate biosynthesis. Mol. Plant 8:911–921.

[24]

Long, Q.,Yue, F.,Liu, R.,Song, S.,Li, X.,Ding, B.,Yan, X., and Pei, Y. (2018). The phosphatidylinositol synthase gene (GhPIS) contributes to longer, stronger, and finer fibers in cotton. Mol. Genet. Genomics 293:1139–1149.

[25]

Ma, Z.,He, S.,Wang, X.,Sun, J.,Zhang, Y.,Zhang, G.,Wu, L.,Li, Z.,Liu, Z.,Sun, G., et al. (2018). Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat. Genet. 50:803–813.

[26]

Montag, K.,Hornbergs, J.,Ivanov, R., and Bauer, P. (2020). Phylogenetic analysis of plant multi-domain SEC. 14-like phosphatidylinositol transfer proteins and structure-function properties of PATELLIN2. Plant Mol. Biol. 104:665–678.

[27]

Munnik, T., and Nielsen, E. (2011). Green light for polyphosphoinositide signals in plants. Curr. Opin. Plant Biol. 14:489–497.

[28]

Nakamura, Y. (2017). Plant phospholipid diversity: Emerging functions in metabolism and protein–lipid interactions. Trends Plant Sci. 22:1027–1040.

[29]

Pertea, M.,Kim, D.,Pertea, G.M.,Leek, J.T., and Salzberg, S.L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11:1650–1667.

[30]

Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45.

[31]

Pu, L.,Li, Q.,Fan, X.,Yang, W., and Xue, Y. (2008). The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics 180:811–820.

[32]

Qin, Y.,Sun, M.,Li, W.,Xu, M.,Shao, L.,Liu, Y.,Zhao, G.,Liu, Z.,Xu, Z.,You, J., et al. (2022). Single-cell RNA-seq reveals fate determination control of an individual fibre cell initiation in cotton (Gossypium hirsutum). Plant Biotechnol. J. 20:2372–2388.

[33]

Qin, Y.M., and Zhu, Y.X. (2011). How cotton fibers elongate: A tale of linear cell-growth mode. Curr. Opin. Plant Biol. 14:106–111.

[34]

Routt, S.M., and Bankaitis, V.A. (2004). Biological functions of phosphatidylinositol transfer proteins. Biochem. Cell. Biol. 82:254–262.

[35]

Ruan, Y.L.,Llewellyn, D.J., and Furbank, R.T. (2001). The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13:47–60.

[36]

Shan, C.M.,Shangguan, X.X.,Zhao, B.,Zhang, X.F.,Chao, L.M.,Yang, C.Q.,Wang, L.J.,Zhu, H.Y.,Zeng, Y.D.,Guo, W.Z., et al. (2014). Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat. Commun. 5:5519.

[37]

Song, Q.,Gao, W.,Du, C.,Sun, W.,Wang, J., and Zuo, K. (2023). GhXB38D represses cotton fibre elongation through ubiquitination of ethylene biosynthesis enzymes GhACS4 and GhACO1. Plant Biotechnol. J. 21:2374–2388.

[38]

Sun, W.,Gao, Z.,Wang, J.,Huang, Y.,Chen, Y.,Li, J.,Lv, M.,Wang, J.,Luo, M., and Zuo, K. (2019). Cotton fiber elongation requires the transcription factor GhMYB212 to regulate sucrose transportation into expanding fibers. New Phytol. 222:864–881.

[39]

Tian, Y., and Zhang, T. (2021). MIXTAs and phytohormones orchestrate cotton fiber development. Curr. Opin. Plant Biol. 59:101975.

[40]

Uemura, Y.,Kimura, S.,Ohta, T.,Suzuki, T.,Mase, K.,Kato, H.,Sakaoka, S.,Uefune, M.,Komine, Y.,Hotta, K., et al. (2023). A very long chain fatty acid responsive transcription factor, MYB93, regulates lateral root development in Arabidopsis. Plant J. 115:1408–1427.

[41]

Walford, S.A.,Wu, Y.,Llewellyn, D.J., and Dennis, E.S. (2011). GhMYB25-like: A key factor in early cotton fibre development. Plant J. 65:785–797.

[42]

Walford, S.A.,Wu, Y.,Llewellyn, D.J., and Dennis, E.S. (2012). Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene,GhHD-1. Plant J. 71:464–478.

[43]

Wang, L., and Ruan, Y.L. (2012). New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton. Plant Physiol. 160:777–787.

[44]

Wanjie, S.W.,Welti, R.,Moreau, R.A., and Chapman, K.D. (2005). Identification and quantification of glycerolipids in cotton fibers: Reconciliation with metabolic pathway predictions from DNA databases. Lipids 40:773–785.

[45]

Xiao, G.,Zhao, P., and Zhang, Y. (2019). A pivotal role of hormones in regulating cotton fiber development. Front. Plant Sci. 10:87.

[46]

Xiao, G.H.,Wang, K.,Huang, G., and Zhu, Y.X. (2016). Genome-scale analysis of the cotton KCS gene family revealed a binary mode of action for gibberellin A regulated fiber growth. J. Integr. Plant Biol. 58:577–589.

[47]

Xie, L.,Yan, T.,Li, L.,Chen, M.,Hassani, D.,Li, Y.,Qin, W.,Liu, H.,Chen, T.,Fu, X., et al. (2021). An HD-ZIP-MYB complex regulates glandular secretory trichome initiation in Artemisia annua. New Phytol. 231:2050–2064.

[48]

Xiong, C.,Xie, Q.,Yang, Q.,Sun, P.,Gao, S.,Li, H.,Zhang, J.,Wang, T.,Ye, Z., and Yang, C. (2020). WOOLLY, interacting with MYB transcription factor MYB31, regulates cuticular wax biosynthesis by modulating CER6 expression in tomato. Plant J. 103:323–337.

[49]

Xu, S.M.,Brill, E.,Llewellyn, D.J.,Furbank, R.T., and Ruan, Y.L. (2012). Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production. Mol. Plant 5:430–441.

[50]

Yan, T.,Li, L.,Xie, L.,Chen, M.,Shen, Q.,Pan, Q.,Fu, X.,Shi, P.,Tang, Y.,Huang, H., et al. (2018). A novel HD-ZIP IV/MIXTA complex promotes glandular trichome initiation and cuticle development in Artemisia annua. New Phytol. 218:567–578.

[51]

Yang, Z.,Qanmber, G.,Wang, Z.,Yang, Z., and Li, F. (2020). Gossypium genomics: Trends, scope, and utilization for cotton improvement. Trends Plant Sci. 25:488–500.

[52]

Yao, H.,Wang, G.,Guo, L., and Wang, X. (2013). Phosphatidic acid interacts with a MYB transcription factor and regulates its nuclear localization and function in Arabidopsis. Plant Cell 25:5030–5042.

[53]

Zhang, F.,Zuo, K.,Zhang, J.,Liu, X.,Zhang, L.,Sun, X., and Tang, K. (2010). An L1 box binding protein, GbML1, interacts with GbMYB25 to control cotton fibre development. J. Exp. Bot. 61:3599–3613.

[54]

Zhang, J.Y.,He, S.B.,Li, L., and Yang, H.Q. (2014). Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyll. Proc. Natl. Acad. Sci. U. S. A. 111: E3015–E3023.

[55]

Zhang, M.,Zheng, X.,Song, S.,Zeng, Q.,Hou, L.,Li, D.,Zhao, J.,Wei, Y.,Li, X.,Luo, M., et al. (2011). Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat. Biotechnol. 29:453–458.

[56]

Zhu, L.,Dou, L.,Shang, H.,Li, H.,Yu, J., and Xiao, G. (2021). GhPIPLC2D promotes cotton fiber elongation by enhancing ethylene biosynthesis. iScience 24:102199.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/