Anchorene, a carotenoid-derived growth regulator, modulates auxin homeostasis by suppressing GH3-mediated auxin conjugation

Danping Ke , Yinpeng Xie , Haipeng Li , Liqun Hu , Yi He , Chao Guo , Yahui Zhai , Jinggong Guo , Kun Li , Zongyan Chu , Junli Zhang , Xuebin Zhang , Salim Al-Babili , Kai Jiang , Yuchen Miao , Kun-Peng Jia

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (11) : 2490 -2504.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (11) : 2490 -2504. DOI: 10.1111/jipb.13764
Research Article

Anchorene, a carotenoid-derived growth regulator, modulates auxin homeostasis by suppressing GH3-mediated auxin conjugation

Author information +
History +
PDF

Abstract

Anchorene, identified as an endogenous bioactive carotenoid-derived dialdehyde and diapocarotenoid, affects root development by modulating auxin homeostasis. However, the precise interaction between anchorene and auxin, as well as the mechanisms by which anchorene modulates auxin levels, remain largely elusive. In this study, we conducted a comparative analysis of anchorene’s bioactivities alongside auxin and observed that anchorene induces multifaceted auxin-like effects. Through genetic and pharmacological examinations, we revealed that anchorene’s auxin-like activities depend on the indole-3-pyruvate-dependent auxin biosynthesis pathway, as well as the auxin inactivation pathway mediated by Group II Gretchen Hagen 3 (GH3) proteins that mainly facilitate the conjugation of indole-3-acetic acid (IAA) to amino acids, leading to the formation of inactivated storage forms. Our measurements indicated that anchorene treatment elevates IAA levels while reducing the quantities of inactivated IAA–amino acid conjugates and oxIAA. RNA sequencing further revealed that anchorene triggers the expression of numerous auxin-responsive genes in a manner reliant on Group II GH3s. Additionally, our in vitro enzymatic assays and biolayer interferometry (BLI) assay demonstrated anchorene’s robust suppression of GH3.17-mediated IAA conjugation with glutamate. Collectively, our findings highlight the significant role of carotenoid-derived metabolite anchorene in modulating auxin homeostasis, primarily through the repression of GH3-mediated IAA conjugation and inactivation pathways, offering novel insights into the regulatory mechanisms of plant bioactive apocarotenoids.

Keywords

Anchorene / auxin conjugation / carotenoid-derived bioactive apocarotenoid / Gretchen Hagen 3 / root development

Cite this article

Download citation ▾
Danping Ke, Yinpeng Xie, Haipeng Li, Liqun Hu, Yi He, Chao Guo, Yahui Zhai, Jinggong Guo, Kun Li, Zongyan Chu, Junli Zhang, Xuebin Zhang, Salim Al-Babili, Kai Jiang, Yuchen Miao, Kun-Peng Jia. Anchorene, a carotenoid-derived growth regulator, modulates auxin homeostasis by suppressing GH3-mediated auxin conjugation. Journal of Integrative Plant Biology, 2024, 66(11): 2490-2504 DOI:10.1111/jipb.13764

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aizezi, Y.,Zhao, H.,Zhang, Z.,Bi, Y.,Yang, Q.,Guo, G.,Zhang, H.,Guo, H.,Jiang, K., and Wang, Z.-Y. (2023). Structure-based virtual screening identifies small-molecule inhibitors of O-fucosyltransferase SPINDLY in Arabidopsis. Plant Cell 36:497–509.

[2]

Al-Babili, S., and Bouwmeester, H.J. (2015). Strigolactones, a novel carotenoid-derived plant hormone. Annu. Rev. Plant Biol. 66:161–186.

[3]

Bartel, B., and Fink, G.R. (1995). ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science 268:1745–1748.

[4]

Benková E.,Michniewicz, M.,Sauer, M.,Teichmann, T.,Seifertová D.,Jürgens, G., and Friml, J. (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602.

[5]

Chen, Q.,Westfall, C.S.,Hicks, L.M.,Wang, S., and Jez, J.M. (2010). Kinetic basis for the conjugation of auxin by a GH3 family indole-acetic acid-amido synthetase. J. Biol. Chem. 285:29780–29786.

[6]

Chen, S.,Zhou, Y.,Chen, Y., and Gu, J. (2018). fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: i884–i890.

[7]

Dai, X.,Mashiguchi, K.,Chen, Q.,Kasahara, H.,Kamiya, Y.,Ojha, S.,DuBois, J.,Ballou, D., and Zhao, Y. (2013). The biochemical mechanism of auxin biosynthesis by an arabidopsis YUCCA flavin-containing monooxygenase. J. Biol. Chem. 288:1448–1457.

[8]

de Klerk, G.-J.,van der Krieken, W., and de Jong, J.C. (1999). Review the formation of adventitious roots: New concepts, new possibilities. In Vitro Cell. Dev. Biol. Plant 35:189–199.

[9]

Delbarre, A.,Muller, P.,Imhoff, V., and Guern, J. (1996). Comparison of mechanisms controlling uptake and accumulation of 2, 4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198:532–541.

[10]

Dickinson, A.J.,Lehner, K.,Mi, J.,Jia, K.P.,Mijar, M.,Dinneny, J.,Al-Babili, S., and Benfey, P.N. (2019). beta-Cyclocitral is a conserved root growth regulator. Proc. Natl. Acad. Sci. U.S.A. 116:10563–10567.

[11]

Dickinson, A.J.,Zhang, J.,Luciano, M.,Wachsman, G.,Sandoval, E.,Schnermann, M.,Dinneny, J.R., and Benfey, P.N. (2021). A plant lipocalin promotes retinal-mediated oscillatory lateral root initiation. Science 373:1532–1536.

[12]

Fiedler, L., and Friml, J. (2023). Rapid auxin signaling: Unknowns old and new. Curr. Opin. Plant Biol. 75:2.

[13]

Fukui, K.,Arai, K.,Tanaka, Y.,Aoi, Y.,Kukshal, V.,Jez, J.M.,Kubes, M.F.,Napier, R.,Zhao, Y.,Kasahara, H., et al. (2022). Chemical inhibition of the auxin inactivation pathway uncovers the roles of metabolic turnover in auxin homeostasis. Proc. Natl. Acad. Sci. U.S.A. 119:1.

[14]

Fukui, K., and Hayashi, K.I. (2018). Manipulation and sensing of auxin metabolism, transport and signaling. Plant Cell Physiol. 59:1500–1510.

[15]

Harrison, C.J. (2017). Auxin transport in the evolution of branching forms. New Phytol. 215:545–551.

[16]

Hayashi, K.I.,Arai, K.,Aoi, Y.,Tanaka, Y.,Hira, H.,Guo, R.,Hu, Y.,Ge, C.,Zhao, Y.,Kasahara, H., et al. (2021). The main oxidative inactivation pathway of the plant hormone auxin. Nat. Commun. 12:6752.

[17]

He, W.,Brumos, J.,Li, H.,Ji, Y.,Ke, M.,Gong, X.,Zeng, Q.,Li, W.,Zhang, X.,An, F., et al. (2011). A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23:3944–3960.

[18]

Huang da, W.,Sherman, B.T., and Lempicki, R.A. (2009). Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1–13.

[19]

Jia, K.P.,Baz, L., and Al-Babili, S. (2018). From carotenoids to strigolactones. J. Exp. Bot. 69:2189–2204.

[20]

Jia, K.P.,Dickinson, A.J.,Mi, J.,Cui, G.,Xiao, T.T.,Kharbatia, N.M.,Guo, X.,Sugiono, E.,Aranda, M.,Blilou, I., et al. (2019). Anchorene is a carotenoid-derived regulatory metabolite required for anchor root formation in Arabidopsis. Sci. Adv. 5: eaaw6787.

[21]

Jia, K.P.,Mi, J.,Ablazov, A.,Ali, S.,Yang, Y.,Balakrishna, A.,Berqdar, L.,Feng, Q.,Blilou, I., and Al-Babili, S. (2021). Iso-anchorene is an endogenous metabolite that inhibits primary root growth in Arabidopsis. Plant J. 107:54–66.

[22]

Jia, K.P.,Mi, J.,Ali, S.,Ohyanagi, H.,Moreno, J.C.,Ablazov, A.,Balakrishna, A.,Berqdar, L.,Fiore, A.,Diretto, G., et al. (2022). An alternative, zeaxanthin epoxidase-independent abscisic acid biosynthetic pathway in plants. Mol. Plant. 15:151–166.

[23]

Kakei, Y.,Yamazaki, C.,Suzuki, M.,Nakamura, A.,Sato, A.,Ishida, Y.,Kikuchi, R.,Higashi, S.,Kokudo, Y.,Ishii, T., et al. (2015). Small-molecule auxin inhibitors that target YUCCA are powerful tools for studying auxin function. Plant J. 84:827–837.

[24]

Ke, D.,Guo, J.,Li, K.,Wang, Y.,Han, X.,Fu, W.,Miao, Y., and Jia, K.P. (2022). Carotenoid-derived bioactive metabolites shape plant root architecture to adapt to the rhizospheric environments. Front. Plant Sci. 13:986414.

[25]

Kim, D.,Langmead, B., and Salzberg, S.L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12:357–360.

[26]

Leyser, O. (2018). Auxin signaling. Plant Physiol. 176:465–479.

[27]

Liu, G.,Gao, S.,Tian, H.,Wu, W.,Robert, H.S., and Ding, Z. (2016). Local transcriptional control of YUCCA regulates auxin promoted root-growth inhibition in response to aluminium stress in Arabidopsis. PLoS Genet. 12: e1006360.

[28]

Meier, M.,Liu, Y.,Lay-Pruitt, K.S.,Takahashi, H., and von Wirén, N. (2020). Auxin-mediated root branching is determined by the form of available nitrogen. Nat. Plants 6:1136–1145.

[29]

Moreno, J.C.,Mi, J.,Alagoz, Y., and Al-Babili, S. (2021). Plant apocarotenoids: From retrograde signaling to interspecific communication. Plant J. 105:351–375.

[30]

Nagpal, P.,Walker, L.M.,Young, J.C.,Sonawala, A.,Timpte, C.,Estelle, M., and Reed, J.W. (2000). AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol. 123:563–574.

[31]

Nambara, E., and Marion-Poll, A. (2005). Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56:165–185.

[32]

Okrent, R.A., and Wildermuth, M.C. (2011). Evolutionary history of the GH3 family of acyl adenylases in rosids. Plant Mol. Biol. 76:489–505.

[33]

Petricka, J.J.,Winter, C.M., and Benfey, P.N. (2012). Control of Arabidopsis root development. Annu. Rev. Plant Biol. 63:563–590.

[34]

Porco, S.,Pěnčík, A.,Rashed, A.,Voß U.,Casanova-Sáez, R.,Bishopp, A.,Golebiowska, A.,Bhosale, R.,Swarup, R.,Swarup, K., et al. (2016). Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 113:11016–11021.

[35]

Sheng, L.,Hu, X.,Du, Y.,Zhang, G.,Huang, H.,Scheres, B., and Xu, L. (2017). Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsis root system architecture. Development 144:3126–3133.

[36]

Staswick, P.E.,Serban, B.,Rowe, M.,Tiryaki, I.,Maldonado, M.T.,Maldonado, M.C., and Suza, W. (2005). Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627.

[37]

Stepanova, A.N.,Robertson-Hoyt, J.,Yun, J.,Benavente, L.M.,Xie, D.Y.,Dolezal, K.,Schlereth, A.,Jürgens, G., and Alonso, J.M. (2008). TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191.

[38]

Stortenbeker, N., and Bemer, M. (2019). The SAUR gene family: The plant’s toolbox for adaptation of growth and development. J. Exp. Bot. 70:17–27.

[39]

Sui, J.,Tian, H.,Ding, Z., and Kong, X. (2024). Crop designs: The ideal root architecture for future crop breeding. New Crops 1:100030.

[40]

Sun, G.,Xia, M.,Li, J.,Ma, W.,Li, Q.,Xie, J.,Bai, S.,Fang, S.,Sun, T.,Feng, X., et al. (2022). Themaize single-nucleus transcriptome comprehensively describes signaling networksgoverning movement and development of grass stomata. Plant Cell 34:1890–1911.

[41]

Surup, F., and Stadler, M. (2015). Natural products in the chemical industry. By Bernd Schaefer. Angew. Chem. Int. Ed. 54:8873–8874.

[42]

Wang, J.Y.,Haider, I.,Jamil, M.,Fiorilli, V.,Saito, Y.,Mi, J.,Baz, L.,Kountche, B.A.,Jia, K.P.,Guo, X., et al. (2019). The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. Nat. Commun. 10:810.

[43]

Wang, Y., and Jiao, Y. (2018). Auxin and above-ground meristems. J. Exp. Bot. 69:147–154.

[44]

Westfall, C.S.,Zubieta, C.,Herrmann, J.,Kapp, U.,Nanao, M.H., and Jez, J.M. (2012). Structural basis for prereceptor modulation of plant hormones by GH3 proteins. Science 336:1708–1711.

[45]

Xie, Y.,Zhu, Y.,Wang, N.,Luo, M.,Ota, T.,Guo, R.,Takahashi, I.,Yu, Z.,Aizezi, Y.,Zhang, L., et al. (2022). Chemical genetic screening identifies nalacin as an inhibitor of GH3 amido synthetase for auxin conjugation. Proc. Natl. Acad. Sci. U.S.A. 119:1.

[46]

Zhang, D.,Hamdoun, S.,Chen, R.,Yang, L.,Ip, C.K.,Qu, Y.,Li, R.,Jiang, H.,Yang, Z.,Chung, S.K., et al. (2021). Identification of natural compounds as SARS-CoV-2 entry inhibitors by molecular docking-based virtual screening with bio-layer interferometry. Pharmacol. Res. 172:105820.

[47]

Zhang, J.,Lin, J.E.,Harris, C.,Campos Mastrotti Pereira, F.,Wu, F.,Blakeslee, J.J., and Peer, W.A. (2016). DAO1 catalyzes temporal and tissue-specific oxidative inactivation of auxin in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 113:11010–11015.

[48]

Zhao, Y. (2010). Auxin biosynthesis and its role in plant development. Annu. Rev. Plant Biol. 61:49–64.

[49]

Zheng, Z.,Guo, Y.,Novák, O.,Chen, W.,Ljung, K.,Noel, J.P., and Chory, J. (2016). Local auxin metabolism regulates environment-induced hypocotyl elongation. Nat. Plants 2:25.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/