Functions and mechanisms of non-histone protein acetylation in plants

Xia Jin , Xiaoshuang Li , Jaime A. Teixeira da Silva , Xuncheng Liu

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (10) : 2087 -2101.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (10) : 2087 -2101. DOI: 10.1111/jipb.13756
Review Article

Functions and mechanisms of non-histone protein acetylation in plants

Author information +
History +
PDF

Abstract

Lysine acetylation, an evolutionarily conserved post-translational protein modification, is reversibly catalyzed by lysine acetyltransferases and lysine deacetylases. Lysine acetylation, which was first discovered on histones, mainly functions to configure the structure of chromatin and regulate gene transcriptional activity. Over the past decade, with advances in high-resolution mass spectrometry, a vast and growing number of non-histone proteins modified by acetylation in various plant species have been identified. Lysine acetylation of non-histone proteins is widely involved in regulating biological processes in plants such as photosynthesis, energy metabolism, hormone signal transduction and stress responses. Moreover, in plants, lysine acetylation plays crucial roles in regulating enzyme activity, protein stability, protein interaction and subcellular localization. This review summarizes recent progress in our understanding of the biological functions and mechanisms of non-histone protein acetylation in plants. Research prospects in this field are also noted.

Keywords

acetylomics / lysine acetylation / lysine deacetylation / non-histone acetylation / post-translational modification

Cite this article

Download citation ▾
Xia Jin, Xiaoshuang Li, Jaime A. Teixeira da Silva, Xuncheng Liu. Functions and mechanisms of non-histone protein acetylation in plants. Journal of Integrative Plant Biology, 2024, 66(10): 2087-2101 DOI:10.1111/jipb.13756

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aiese Cigliano, R.,Sanseverino, W.,Cremona, G.,Ercolano, M.R.,Conicella, C., and Consiglio, F.M. (2013). Genome-wide analysis of histone modifiers in tomato: Gaining an insight into their developmental roles. BMC Genomics 14: 57.

[2]

Allfrey, V.G.,Faulkner, R., and Mirsky, A.E. (1964). Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. U.S.A. 51: 786-794.

[3]

An, C.,Deng, L.,Zhai, H.,You, Y.,Wu, F.,Zhai, Q.,Goossens, A., and Li, C. (2022). Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis. Mol. Plant 15: 1329-1346.

[4]

Andersson, I. (2008). Catalysis and regulation in Rubisco. J. Exp. Bot. 59: 1555-1568.

[5]

Balparda, M.,Elsässer, M.,Badia, M.B.,Giese, J.,Bovdilova, A.,Hüdig, M.,Reinmuth, L.,Eirich, J.,Schwarzländer, M.,Finkemeier, I., et al. (2022). Acetylation of conserved lysines fine-tunes mitochondrial malate dehydrogenase activity in land plants. Plant J. 109: 92-111.

[6]

Bienvenut, W.V.,Brünje, A.,Boyer, J.B.,Mühlenbeck, J.S.,Bernal, G.,Lassowskat, I.,Dian, C.,Linster, E.,Dinh, T.V.,Koskela, M.M., et al. (2020). Dual lysine and N-terminal acetyltransferases reveal the complexity underpinning protein acetylation. Mol. Syst. Biol. 16: e9464.

[7]

Browse, J. (2009). Jasmonate passes muster: A receptor and targets for the defense hormone. Annu. Rev. Plant Biol. 60: 183-205.

[8]

Caron, C.,Boyault, C., and Khochbin, S. (2005). Regulatory cross-talk between lysine acetylation and ubiquitination: Role in the control of protein stability. Bioessays 27: 408-415.

[9]

Chen, Y.,Sprung, R.,Tang, Y.,Ball, H.,Sangras, B.,Kim, S.C.,Falck, J.R.,Peng, J.M.,Gu, W., and Zhao, Y.M. (2007). Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell. Proteomics 6: 812-819.

[10]

Chen, Y.,Zhao, W.,Yang, J.S.,Cheng, Z.,Luo, H.,Lu, Z.,Tan, M.,Gu, W., and Zhao, Y. (2012). Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways. Mol. Cell. Proteomics 11: 1048-1062.

[11]

Choudhary, C.,Kumar, C.,Gnad, F.,Nielsen, M.L.,Rehman, M.,Walther, T.C.,Olsen, J.V., and Mann, M. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325: 834-840.

[12]

Cui, X.,Dard, A.,Reichheld, J.P., and Zhou, D.X. (2023). Multifaceted functions of histone deacetylases in stress response. Trends Plant Sci. 28: 1245-1256.

[13]

Duan, C.G.,Wang, X.,Xie, S.,Pan, L.,Miki, D.,Tang, K.,Hsu, C.C.,Lei, M.,Zhong, Y.,Hou, Y.J., et al. (2017). A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation. Cell Res. 27: 226-240.

[14]

Fang, X.,Chen, W.,Zhao, Y.,Ruan, S.,Zhang, H.,Yan, C.,Jin, L.,Cao, L.,Zhu, J.,Ma, H., et al. (2015). Global analysis of lysine acetylation in strawberry leaves. Front. Plant Sci. 6: 739.

[15]

Feng, C.,Cai, X.W.,Su, Y.N.,Li, L.,Chen, S., and He, X.J. (2021). Arabidopsis RPD3-like histone deacetylases form multiple complexes involved in stress response. J. Genet. Genomics 48: 369-383.

[16]

Finkemeier, I.,Laxa, M.,Miguet, L.,Howden, A.J., and Sweetlove, L.J. (2011). Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis. Plant Physiol. 155: 1779-1790.

[17]

Fischer, E.H.,Graves, D.J.,Crittenden, E.R.S., and Krebs, E.G. (1959). Structure of the site phosphorylated in the phosphorylase-B to phosphorylase-a reaction. J. Biol. Chem. 234: 1698-1704.

[18]

Fischle, W.,Wang, Y., and Allis, C.D. (2003). Histone and chromatin cross-talk. Curr. Opin. Cell Biol. 15: 172-183.

[19]

Fu, W.,Wu, K., and Duan, J. (2007). Sequence and expression analysis of histone deacetylases in rice. Biochem. Biophys. Res. Commun. 356: 843-850.

[20]

Gao, X.,Hong, H.,Li, W.C.,Yang, L.,Huang, J.,Xiao, Y.L.,Chen, X.Y., and Chen, G.Y. (2016). Downregulation of Rubisco activity by non-enzymatic acetylation of RbcL. Mol. Plant 9: 1018-1027.

[21]

Gao, X.,Xu, S.,Mo, Y.,Zhu, Y.,Chen, X.,Miao, M.,Quan, Y., and Yu, W. (2022). Acetylation of fructose-bisphosphate aldolase-mediated glycolysis is essential for Bombyx mori nucleopolyhedrovirus infection. Microb. Pathog. 170: 105695.

[22]

Geffen, Y.,Anand, S.,Akiyama, Y.,Yaron, T.M.,Song, Y.,Johnson, J.L.,Govindan, A.,Babur, O.,Li, Y.,Huntsman, E., et al. (2023). Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation. Cell 186: 3945-3967.

[23]

Gong, Z.,Xiong, L.,Shi, H.,Yang, S.,Herrera-Estrella, L.R.,Xu, G.,Chao, D.Y.,Li, J.,Wang, P.Y.,Qin, F., et al. (2020). Plant abiotic stress response and nutrient use efficiency. Sci. China: Life Sci. 63: 635-674.

[24]

Grasser, K.D.,Rubio, V., and Barneche, F. (2021). Multifaceted activities of the plant SAGA complex. Biochim. Biophys. Acta, Gene Regul. Mech. 1864: 194613.

[25]

Gu, W., and Roeder, R.G. (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595-606.

[26]

Guo, J.,Chai, X.,Mei, Y.,Du, J.,Du, H.,Shi, H.,Zhu, J.-K., and Zhang, H. (2022). Acetylproteomics analyses reveal critical features of lysine-ϵ-acetylation in Arabidopsis and a role of 14-3-3 protein acetylation in alkaline response. Stress Biol. 2: 1.

[27]

Guo, W.,Han, L.,Li, X.,Wang, H.,Mu, P.,Lin, Q.,Liu, Q., and Zhang, Y. (2020). Proteome and lysine acetylome analysis reveals insights into the molecular mechanism of seed germination in wheat. Sci. Rep. 10: 13454.

[28]

Gururani, M.A.,Venkatesh, J., and Tran, L.S. (2015). Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol. Plant 8: 1304-1320.

[29]

Hao, Y.,Wang, H.,Qiao, S.,Leng, L., and Wang, X. (2016). Histone deacetylase HDA6 enhances brassinosteroid signaling by inhibiting the BIN2 kinase. Proc. Natl. Acad. Sci. U.S.A. 113: 10418-10423.

[30]

Hartl, M.,Füßl, M.,Boersema, P.J.,Jost, J.O.,Kramer, K.,Bakirbas, A.,Sindlinger, J.,Plöchinger, M.,Leister, D.,Uhrig, G., et al. (2017). Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis. Mol. Syst. Biol. 13: 949.

[31]

He, D.,Li, M.,Damaris, R.N.,Bu, C.,Xue, J., and Yang, P. (2020). Quantitative ubiquitylomics approach for characterizing the dynamic change and extensive modulation of ubiquitylation in rice seed germination. Plant J. 101: 1430-1447.

[32]

He, D.,Wang, Q.,Li, M.,Damaris, R.N.,Yi, X.,Cheng, Z., and Yang, P. (2016). Global proteome analyses of lysine acetylation and succinylation reveal the widespread involvement of both modification in metabolism in the embryo of germinating rice seed. J. Proteome Res. 15: 879-890.

[33]

He, J.X.,Gendron, J.M.,Yang, Y.,Li, J., and Wang, Z.Y. (2002). The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 99: 10185-10190.

[34]

Hou, J.,Zheng, X.,Ren, R.,Shi, Q.,Xiao, H.,Chen, Z.,Yue, M.,Wu, Y.,Hou, H., and Li, L. (2022). The histone deacetylase 1/GSK3/SHAGGY-like kinase 2/BRASSINAZOLE-RESISTANT 1 module controls lateral root formation in rice. Plant Physiol. 189: 858-873.

[35]

Jiang, J.,Gai, Z.,Wang, Y.,Fan, K.,Sun, L.,Wang, H., and Ding, Z. (2018). Comprehensive proteome analyses of lysine acetylation in tea leaves by sensing nitrogen nutrition. BMC Genomics 19: 840.

[36]

Kazan, K., and Manners, J.M. (2013). MYC2: The master in action. Mol. Plant 6: 686-703.

[37]

Kim, T.W.,Guan, S.,Sun, Y.,Deng, Z.,Tang, W.,Shang, J.X.,Sun, Y.,Burlingame, A.L., and Wang, Z.Y. (2009). Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol. 11: 1254-1260.

[38]

König, A.C.,Hartl, M.,Boersema, P.J.,Mann, M., and Finkemeier, I. (2014a). The mitochondrial lysine acetylome of Arabidopsis. Mitochondrion 19: 252-260.

[39]

König, A.C.,Hartl, M.,Pham, P.A.,Laxa, M.,Boersema, P.J.,Orwat, A.,Kalitventseva, I.,Plöchinger, M.,Braun, H.P.,Leister, D., et al. (2014b). The Arabidopsis class II sirtuin is a lysine deacetylase and interacts with mitochondrial energy metabolism. Plant Physiol. 164: 1401-1414.

[40]

Lang, Z.,Lei, M.,Wang, X.,Tang, K.,Miki, D.,Zhang, H.,Mangrauthia, S.K.,Liu, W.,Nie, W.,Ma, G., et al. (2015). The methyl-CpG-binding protein MBD7 facilitates active DNA demethylation to limit DNA hyper-methylation and transcriptional gene silencing. Mol. Cell 57: 971-983.

[41]

Li, G.,Zheng, B.,Zhao, W.,Ren, T.,Zhang, X.,Ning, T., and Liu, P. (2021). Global analysis of lysine acetylation in soybean leaves. Sci. Rep. 11: 17858.

[42]

Li, T.,Liu, M.,Feng, X.,Wang, Z.,Das, I.,Xu, Y.,Zhou, X.,Sun, Y.,Guan, K.L.,Xiong, Y., et al. (2014). Glyceraldehyde-3-phosphate dehydrogenase is activated by lysine 254 acetylation in response to glucose signal. J. Biol. Chem. 289: 3775-3785.

[43]

Li, X.,Ye, J.,Ma, H., and Lu, P. (2018). Proteomic analysis of lysine acetylation provides strong evidence for involvement of acetylated proteins in plant meiosis and tapetum function. Plant J. 93: 142-154.

[44]

Liang, X., and Zhang, J. (2022). Regulation of plant responses to biotic and abiotic stress by receptor-like cytoplasmic kinases. Stress Biol. 2: 25.

[45]

Liao, X.,Li, Y.,Hu, Z.,Lin, Y.,Zheng, B., and Ding, J. (2021). Poplar acetylome profiling reveals lysine acetylation dynamics in seasonal bud dormancy release. Plant Cell Environ. 44: 1830-1845.

[46]

Liew, L.C.,Singh, M.B., and Bhalla, P.L. (2013). An RNA-seq transcriptome analysis of histone modifiers and RNA silencing genes in soybean during floral initiation process. PLoS ONE 8: e77502.

[47]

Lindén, P.,Keech, O.,Stenlund, H.,Gardeström, P., and Moritz, T. (2016). Reduced mitochondrial malate dehydrogenase activity has a strong effect on photorespiratory metabolism as revealed by 13C labelling. J. Exp. Bot. 67: 3123-3135.

[48]

Liu, S.,Yu, F.,Yang, Z.,Wang, T.,Xiong, H.,Chang, C.,Yu, W., and Li, N. (2018). Establishment of dimethyl labeling-based quantitative acetylproteomics in Arabidopsis. Mol. Cell. Proteomics 17: 1010-1027.

[49]

Liu, X.,Luo, M.,Zhang, W.,Zhao, J.,Zhang, J.,Wu, K.,Tian, L., and Duan, J. (2012). Histone acetyltransferases in rice (Oryza sativa L.): Phylogenetic analysis, subcellular localization and expression. BMC Plant Biol. 12: 145.

[50]

Liu, X.,Wei, W.,Zhu, W.,Su, L.,Xiong, Z.,Zhou, M.,Zheng, Y., and Zhou, D.X. (2017). Histone deacetylase AtSRT1 links metabolic flux and stress response in Arabidopsis. Mol. Plant 10: 1510-1522.

[51]

Liu, X.,Yang, S.,Zhao, M.,Luo, M.,Yu, C.W.,Chen, C.Y.,Tai, R., and Wu, K. (2014). Transcriptional repression by histone deacetylases in plants. Mol. Plant 7: 764-772.

[52]

Liu, Z.,Song, J.,Miao, W.,Yang, B.,Zhang, Z.,Chen, W.,Tan, F.,Suo, H.,Dai, X.,Zou, X., et al. (2021). Comprehensive proteome and lysine acetylome analysis reveals the widespread involvement of acetylation in cold resistance of pepper (Capsicum annuum L.). Front. Plant Sci. 12: 730489.

[53]

Ma, X.,Lv, S.,Zhang, C., and Yang, C. (2013). Histone deacetylases and their functions in plants. Plant Cell Rep. 32: 465-478.

[54]

Meng, X.,Lv, Y.,Mujahid, H.,Edelmann, M.J.,Zhao, H.,Peng, X., and Peng, Z. (2018). Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation. Biochim. Biophys. Acta Proteins Proteom. 1866: 451-463.

[55]

Menzies, K.J.,Zhang, H.,Katsyuba, E., and Auwerx, J. (2016). Protein acetylation in metabolism-metabolites and cofactors. Nat. Rev. Endocrinol. 12: 43-60.

[56]

Moreno-Sánchez, R.,Gallardo-Pérez, J.C.,Pacheco-Velazquez, S.C.,Robledo-Cadena, D.X.,Rodríguez-Enríquez, S.,Encalada, R.,Saavedra, E., and Marín-Hernández, Á. (2021). Regulatory role of acetylation on enzyme activity and fluxes of energy metabolism pathways. Biochim. Biophys. Acta, Gen. Subj. 1865: 130021.

[57]

Nallamilli, B.R.,Edelmann, M.J.,Zhong, X.,Tan, F.,Mujahid, H.,Zhang, J.,Nanduri, B., and Peng, Z. (2014). Global analysis of lysine acetylation suggests the involvement of protein acetylation in diverse biological processes in rice (Oryza sativa). PLoS ONE 9: e89283.

[58]

Narita, T.,Weinert, B.T., and Choudhary, C. (2019). Functions and mechanisms of non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 20: 156-174.

[59]

Ning, Y.Q.,Chen, Q.,Lin, R.N.,Li, Y.Q.,Li, L.,Chen, S., and He, X.J. (2019). The HDA19 histone deacetylase complex is involved in the regulation of flowering time in a photoperiod-dependent manner. Plant J. 98: 448-464.

[60]

Pandey, R.,Müller, A.,Napoli, C.A.,Selinger, D.A.,Pikaard, C.S.,Richards, E.J.,Bender, J.,Mount, D.W., and Jorgensen, R.A. (2002). Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 30: 5036-5055.

[61]

Patel, A.B.,He, Y., and Radhakrishnan, I. (2024). Histone acetylation and deacetylation-Mechanistic insights from structural biology. Gene 890: 147798.

[62]

Portis, Jr., A.R. (2003). Rubisco activase-Rubisco’s catalytic chaperone. Photosynth. Res. 75: 11-27.

[63]

Qian, W.,Miki, D.,Zhang, H.,Liu, Y.,Zhang, X.,Tang, K.,Kan, Y.,La, H.,Li, X.,Li, S., et al. (2012). A histone acetyltransferase regulates active DNA demethylation in Arabidopsis. Science 336: 1445-1448.

[64]

Rao, R.S.,Thelen, J.J., and Miernyk, J.A. (2014). Is Lys-Nϵ-acetylation the next big thing in post-translational modifications? Trends Plant Sci. 19: 550-553.

[65]

Rodriguez, M.C.,Mehta, D.,Tan, M., and Uhrig, R.G. (2021). Quantitative proteome and PTMome analysis of Arabidopsis thaliana root responses to persistent osmotic and salinity stress. Plant Cell Physiol. 62: 1012-1029.

[66]

Shen, Y.,Wei, W., and Zhou, D.X. (2015). Histone acetylation enzymes coordinate metabolism and gene expression. Trends Plant Sci. 20: 614-621.

[67]

Shvedunova, M., and Akhtar, A. (2022). Modulation of cellular processes by histone and non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 23: 329-349.

[68]

Singh, P.K.,Gao, W.,Liao, P.,Li, Y.,Xu, F.C.,Ma, X.N.,Long, L., and Song, C.P. (2020). Comparative acetylome analysis of wild-type and fuzzless-lintless mutant ovules of upland cotton (Gossypium hirsutum Cv. Xu142) unveils differential protein acetylation may regulate fiber development. Plant Physiol. Biochem. 150: 56-70.

[69]

Smith-Hammond, C.L.,Hoyos, E., and Miernyk, J.A. (2014). The pea seedling mitochondrial Nepsilon-lysine acetylome. Mitochondrion 19: 154-165.

[70]

Song, X.J.,Kuroha, T.,Ayano, M.,Furuta, T.,Nagai, K.,Komeda, N.,Segami, S.,Miura, K.,Ogawa, D.,Kamura, T., et al. (2015). Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proc. Natl. Acad. Sci. U.S.A. 112: 76-81.

[71]

Tilak, P.,Kotnik, F.,Née, G.,Seidel, J.,Sindlinger, J.,Heinkow, P.,Eirich, J.,Schwarzer, D., and Finkemeier, I. (2023). Proteome-wide lysine acetylation profiling to investigate the involvement of histone deacetylase HDA5 in the salt stress response of Arabidopsis leaves. Plant J. 115: 275-292.

[72]

Tran, H.T.,Nimick, M.,Uhrig, R.G.,Templeton, G.,Morrice, N.,Gourlay, R.,DeLong, A., and Moorhead, G.B. (2012). Arabidopsis thaliana histone deacetylase 14 (HDA14) is an α-tubulin deacetylase that associates with PP2A and enriches in the microtubule fraction with the putative histone acetyltransferase ELP3. Plant J. 71: 263-272.

[73]

Uhrig, R.G.,Schläpfer, P.,Roschitzki, B.,Hirsch-Hoffmann, M., and Gruissem, W. (2019). Diurnal changes in concerted plant protein phosphorylation and acetylation in Arabidopsis organs and seedlings. Plant J. 99: 176-194.

[74]

Venkat, S.,Gregory, C.,Sturges, J.,Gan, Q., and Fan, C. (2017). Studying the lysine acetylation of malate dehydrogenase. J. Mol. Biol. 429: 1396-1405.

[75]

Waadt, R.,Seller, C.A.,Hsu, P.K.,Takahashi, Y.,Munemasa, S., and Schroeder, J.I. (2022). Plant hormone regulation of abiotic stress responses. Nat. Rev. Mol. Cell Biol. 23: 680-694.

[76]

Walley, J.W.,Shen, Z.,McReynolds, M.R.,Schmelz, E.A., and Briggs, S.P. (2018). Fungal-induced protein hyperacetylation in maize identified by acetylome profiling. Proc. Natl. Acad. Sci. U.S.A. 115: 210-215.

[77]

Wang, Z.Y.,Nakano, T.,Gendron, J.,He, J.,Chen, M.,Vafeados, D.,Yang, Y.,Fujioka, S.,Yoshida, S.,Asami, T., et al. (2002). Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev. Cell 2: 505-513.

[78]

Weinert, B.T.,Narita, T.,Satpathy, S.,Srinivasan, B.,Hansen, B.K.,Schölz, C.,Hamilton, W.B.,Zucconi, B.E.,Wang, W.W.,Liu, W.R., et al. (2018). Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome. Cell 174: 231-244.e12.

[79]

Wu, X.,Oh, M.H.,Schwarz, E.M.,Larue, C.T.,Sivaguru, M.,Imai, B.S.,Yau, P.M.,Ort, D.R., and Huber, S.C. (2011). Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis. Plant Physiol. 155: 1769-1778.

[80]

Wu, C.J.,Liu, Z.Z.,Wei, L.,Zhou, J.X.,Cai, X.W.,Su, Y.N.,Li, L.,Chen, S., and He, X.J. (2021). Three functionally redundant plant-specific paralogs are core subunits of the SAGA histone acetyltransferase complex in Arabidopsis. Mol. Plant 14: 1071-1087.

[81]

Wu, C.J.,Yuan, D.Y.,Liu, Z.Z.,Xu, X.,Wei, L.,Cai, X.W.,Su, Y.N.,Li, L.,Chen, S., and He, X.J. (2023). Conserved and plant-specific histone acetyltransferase complexes cooperate to regulate gene transcription and plant development. Nat. Plants 9: 442-459.

[82]

Xia, L.,Kong, X.,Song, H.,Han, Q., and Zhang, S. (2022). Advances in proteome-wide analysis of plant lysine acetylation. Plant Commun. 3: 100266.

[83]

Xie, Z.Y.,Dai, J.B.A.,Dai, L.Z.,Tan, M.J.,Cheng, Z.Y.,Wu, Y.M.,Boeke, J.D., and Zhao, Y.M. (2012). Lysine succinylation and lysine malonylation in histones. Mol. Cell. Proteomics 11: 100-107.

[84]

Xiong, Y.,Peng, X.,Cheng, Z.,Liu, W., and Wang, G.L. (2016). A comprehensive catalog of the lysine-acetylation targets in rice (Oryza sativa) based on proteomic analyses. J. Proteomics 138: 20-29.

[85]

Xu, Q.,Liu, Q.,Chen, Z.,Yue, Y.,Liu, Y.,Zhao, Y., and Zhou, D.X. (2021). Histone deacetylases control lysine acetylation of ribosomal proteins in rice. Nucleic Acids Res. 49: 4613-4628.

[86]

Yan, Z.,Shen, Z.,Gao, Z.F.,Chao, Q.,Qian, C.R.,Zheng, H., and Wang, B.C. (2020). A comprehensive analysis of the lysine acetylome reveals diverse functions of acetylated proteins during de-etiolation in Zea mays. J. Plant. Physiol. 248: 153158.

[87]

Yang, C.,Shen, W.,Chen, H.,Chu, L.,Xu, Y.,Zhou, X.,Liu, C.,Chen, C.,Zeng, J.,Liu, J., et al. (2018). Characterization and subcellular localization of histone deacetylases and their roles in response to abiotic stresses in soybean. BMC Plant Biol. 18: 226.

[88]

Yang, C.J.,Zhang, C.,Lu, Y.N.,Jin, J.Q., and Wang, X.L. (2011). The mechanisms of brassinosteroids’ action: From signal transduction to plant development. Mol. Plant 4: 588-600.

[89]

Yang, Z.,Du, J.,Tan, X.,Zhang, H.,Li, L.,Li, Y.,Wei, Z.,Xu, Z.,Lu, Y.,Chen, J., et al. (2024). Histone deacetylase OsHDA706 orchestrates rice broad-spectrum antiviral immunity and is impeded by a viral effector. Cell Rep. 43: 113838.

[90]

Yin, Y.,Wang, Z.Y.,Mora-Garcia, S.,Li, J.,Yoshida, S.,Asami, T., and Chory, J. (2002). BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109: 181-191.

[91]

Yuan, L.,Liu, X.,Luo, M.,Yang, S., and Wu, K. (2013). Involvement of histone modifications in plant abiotic stress responses. J. Integr. Plant Biol. 55: 892-901.

[92]

Zhang, H.,Zhao, Y., and Zhou, D.X. (2017). Rice NAD+-dependent histone deacetylase OsSRT1 represses glycolysis and regulates the moonlighting function of GAPDH as a transcriptional activator of glycolytic genes. Nucleic Acids Res. 45: 12241-12255.

[93]

Zhang, H.,Zhu, J.,Gong, Z., and Zhu, J.K. (2022). Abiotic stress responses in plants. Nat. Rev. Genet. 23: 104-119.

[94]

Zhang, J.M.,Sprung, R.,Pei, J.M.,Tan, X.H.,Kim, S.,Zhu, H.,Liu, C.F.,Grishin, N.V., and Zhao, Y.M. (2009). Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol. Cell. Proteomics 8: 215-225.

[95]

Zhang, K.,Tian, S., and Fan, E. (2013). Protein lysine acetylation analysis: Current MS-based proteomic technologies. Analyst 138: 1628-1636.

[96]

Zhang, K.,Yu, L.,Pang, X.,Cao, H.,Si, H.,Zang, J.,Xing, J., and Dong, J. (2020). In silico analysis of maize HDACs with an emphasis on their response to biotic and abiotic stresses. PeerJ 8: e8539.

[97]

Zhang, Y.,Song, L.,Liang, W.,Mu, P.,Wang, S., and Lin, Q. (2016). Comprehensive profiling of lysine acetylproteome analysis reveals diverse functions of lysine acetylation in common wheat. Sci. Rep. 6: 21069.

[98]

Zhao, J.,Peng, P.,Schmitz, R.J.,Decker, A.D.,Tax, F.E., and Li, J. (2002). Two putative BIN2 substrates are nuclear components of brassinosteroid signaling. Plant Physiol. 130: 1221-1229.

[99]

Zhao, S.,Xu, W.,Jiang, W.,Yu, W.,Lin, Y.,Zhang, T.,Yao, J.,Zhou, L.,Zeng, Y.,Li, H., et al. (2010). Regulation of cellular metabolism by protein lysine acetylation. Science 327: 1000-1004.

[100]

Zhen, S.,Deng, X.,Wang, J.,Zhu, G.,Cao, H.,Yuan, L., and Yan, Y. (2016). First comprehensive proteome analyses of lysine acetylation and succinylation in seedling leaves of Brachypodium distachyon L. Sci. Rep. 6: 31576.

[101]

Zheng, Y.,Ge, J.,Bao, C.,Chang, W.,Liu, J.,Shao, J.,Liu, X.,Su, L.,Pan, L., and Zhou, D.X. (2020). Histone deacetylase HDA9 and WRKY53 transcription factor are mutual antagonists in regulation of plant stress response. Mol. Plant 13: 598-611.

[102]

Zhou, H.,Finkemeier, I.,Guan, W.,Tossounian, M.A.,Wei, B.,Young, D.,Huang, J.,Messens, J.,Yang, X.,Zhu, J., et al. (2018). Oxidative stress-triggered interactions between the succinyl-and acetyl-proteomes of rice leaves. Plant Cell Environ. 41: 1139-1153.

[103]

Zhou, X.,He, J.,Velanis, C.N.,Zhu, Y.,He, Y.,Tang, K.,Zhu, M.,Graser, L.,de Leau, E.,Wang, X., et al. (2021). A domesticated Harbinger transposase forms a complex with HDA6 and promotes histone H3 deacetylation at genes but not TEs in Arabidopsis. J. Integr Plant Biol. 63: 1462-1474.

[104]

Zhu, G.R.,Yan, X.,Zhu, D.,Deng, X.,Wu, J.S.,Xia, J., and Yan, Y.M. (2018). Lysine acetylproteome profiling under water deficit reveals key acetylated proteins involved in wheat grain development and starch biosynthesis. J. Proteomics 185: 8-24.

[105]

Zhu, J.K. (2016). Abiotic stress signaling and responses in plants. Cell 167: 313-324.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/