PDF
Abstract
Recent studies have documented plant responses to climate change extensively, particularly to single-stress exposures. However, critical factors for stress survival, such as sexual differentiation, are not often considered. The dioicous Marchantia polymorpha stands as an evolutionary milestone, potentially preserving ancestral traits from the early colonizers. In this study, we employed proteomic analyses complemented with physiological monitoring to investigate combined heat and drought responses in Tak-1 (male) and Tak-2 (female) accessions of this liverwort. Additionally, targeted transcriptomics was conducted using different natural populations from contrasting environments. Our findings revealed sex-biased dynamics among natural accessions, particularly evident under control conditions and during early stress responses. Although Tak-2 exhibited greater diversity than Tak-1 under control conditions, male accession demonstrated distinct and more rapid stress sensing and signaling. These differences in stress response appeared to be strongly related to sex-specific plasticity influenced by geoclimatic origin. Furthermore, we established distinct protein gene ages and genomic distribution trends, underscoring the importance of protein diversification over time. This study provides an evolutionary perspective on sexual divergence and stress emergence employing a systems biology approach, which allowed for the establishment of global and sex-specific interaction networks in the stress response.
Keywords
abiotic stress
/
land adaptation
/
liverwort
/
sex-biased response
/
systems biology
Cite this article
Download citation ▾
Sara Guerrero, Víctor Roces, Lara García-Campa, Luis Valledor, Mónica Meijón.
Proteomic dynamics revealed sex-biased responses to combined heat-drought stress in Marchantia.
Journal of Integrative Plant Biology, 2024, 66(10): 2226-2241 DOI:10.1111/jipb.13753
| [1] |
Akter, K.,Kato, M.,Sato, Y.,Kaneko, Y., and Takezawa, D. (2014). Abscisic acid-induced rearrangement of intracellular structures associated with freezing and desiccation stress tolerance in the liverwort Marchantia polymorpha. J. Plant Physiol. 171: 1334-1343.
|
| [2] |
Albert, N.W.,Thrimawithana, A.H.,McGhie, T.K.,Clayton, W.A.,Deroles, S.C.,Schwinn, K.E.,Bowman, J.L.,Jordan, B.R., and Davies, K.M. (2018). Genetic analysis of the liverwort Marchantia polymorpha reveals that R2R3MYB activation of flavonoid production in response to abiotic stress is an ancient character in land plants. New Phytol. 218: 554-566.
|
| [3] |
Argelaguet, R.,Arnol, D.,Bredikhin, D.,Deloro, Y.,Velten, B.,Marioni, J.C., and Stegle, O. (2020). MOFA+: A statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 21: 111.
|
| [4] |
Arias, C.L.,Pavlovic, T.,Torcolese, G.,Badia, M.B.,Gismondi, M.,Maurino, V.G.,Andreo, C.S.,Drincovich, M.F.,Gerrard Wheeler, M.C., and Saigo, M. (2018). NADP-dependent malic enzyme 1 participates in the abscisic acid response in Arabidopsis thaliana. Front. Plant Sci. 9: 1637.
|
| [5] |
Barajas-López, J.D.D.,Kremnev, D.,Shaikhali, J.,Piñas-Fernández, A., and Strand, Å. (2013). PAPP5 is involved in the tetrapyrrole mediated plastid signalling during chloroplast development. PLoS One 8: e60305.
|
| [6] |
Bigot, S.,Buges, J.,Gilly, L.,Jacques, C.,Le Boulch, P.,Berger, M.,Delcros, P.,Domergue, J.,Koehl, A.,Ley-Ngardigal, B., et al. (2018). Pivotal roles of environmental sensing and signaling mechanisms in plant responses to climate change. Glob. Chang. Biol. 24: 5573-5589.
|
| [7] |
Bowman, J.L.,Kohchi, T.,Yamato, K.T.,Jenkins, J.,Shu, S.,Ishizaki, K.,Yamaoka, S.,Nishihama, R.,Nakamura, Y.,Berger, F. et al. (2017). Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171: 287-304.e15.
|
| [8] |
Bowman, J.L.,Arteaga-Vazquez, M.,Berger, F.,Briginshaw, L.N.,Carella, P.,Aguilar-Cruz, A.,Davies, K.M.,Dierschke, T.,Dolan, L.,Dorantes-Acosta, A.E., et al. (2022). The renaissance and enlightenment of Marchantia as a model system. Plant Cell 34: 3512-3542.
|
| [9] |
Busch, A.,Deckena, M.,Almeida-Trapp, M.,Kopischke, S.,Kock, C.,Schüssler, E.,Tsiantis, M.,Mithöfer, A., and Zachgo, S. (2019). MpTCP 1 controls cell proliferation and redox processes in Marchantia polymorpha. New Phytol. 224: 1627-1641.
|
| [10] |
Carella, P.,Gogleva, A.,Hoey, D.J.,Bridgen, A.J.,Stolze, S.C.,Nakagami, H., and Schornack, S. (2019). Conserved biochemical defenses underpin host responses to oomycete infection in an early-divergent land plant lineage. Curr. Biol. 29: 2282-2294.e5.
|
| [11] |
Clark, J.W. (2023). Genome evolution in plants and the origins of innovation. New Phytol. 240: 2204-2209.
|
| [12] |
Clark, J.W.,Hetherington, A.J.,Morris, J.L.,Pressel, S.,Duckett, J.G.,Puttick, M.N.,Schneider, H.,Kenrick, P.,Wellman, C.H., and Donoghue, P.C.J. (2023). Evolution of phenotypic disparity in the plant kingdom. Nat. Plants 9: 1618-1626.
|
| [13] |
Doughty, T.W.,Domenzain, I.,Millan-Oropeza, A.,Montini, N.,De Groot, P.A.,Pereira, R.,Nielsen, J.,Henry, C.,Daran, J-MG.,Siewers, V., et al. (2020). Stress-induced expression is enriched for evolutionarily young genes in diverse budding yeasts. Nat. Commun. 11: 2144.
|
| [14] |
Drost, H.-G.,Gabel, A.,Liu, J.,Quint, M., and Grosse, I. (2018). myTAI: Evolutionary transcriptomics with R. Bioinformatics 34: 1589-1590.
|
| [15] |
Eklund, D.M.,Kanei, M.,Flores-Sandoval, E.,Ishizaki, K.,Nishihama, R.,Kohchi, T.,Lagercrantz, U.,Bhalerao, R.P.,Sakata, Y., and Bowman, J.L. (2018). An evolutionarily conserved abscisic acid signaling pathway regulates dormancy in the liverwort Marchantia polymorpha. Curr. Biol. 28: 3691-3699.e3.
|
| [16] |
Fujita, M.,Fujita, Y.,Iuchi, S.,Yamada, K.,Kobayashi, Y.,Urano, K.,Kobayashi, M.,Yamaguchi-Shinozaki, K., and Shinozaki, K. (2012). Natural variation in a polyamine transporter determines paraquat tolerance in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A 109: 6343-6347.
|
| [17] |
Furumoto, T.,Yamaoka, S.,Kohchi, T.,Motose, H., and Takahashi, T. (2024). Thermospermine is an evolutionarily ancestral phytohormone required for organ development and stress responses in Marchantia polymorpha. Plant Cell Physiol. 65: 460-471.
|
| [18] |
Ghosh, T.K.,Tompa, N.H.,Rahman, Md.M.,Mohi-Ud-Din, M.,Al-Meraj, S.M.Z.,Biswas, Md.S., and Mostofa, M.G. (2021). Acclimation of liverwort Marchantia polymorpha to physiological drought reveals important roles of antioxidant enzymes, proline and abscisic acid in land plant adaptation to osmotic stress. PeerJ 9: e12419.
|
| [19] |
Hatchett, W.J.,Jueterbock, A.O.,Kopp, M.,Coyer, J.A.,Coelho, S.M.,Hoarau, G., and Lipinska, A.P. (2023). Evolutionary dynamics of sex-biased gene expression in a young XY system: Insights from the brown alga genus Fucus. New Phytol. 238: 422-437.
|
| [20] |
Healey, A.L.,Piatkowski, B.,Lovell, J.T.,Sreedasyam, A.,Carey, S.B.,Mamidi, S.,Shu, S.,Plott, C.,Jenkins, J.,Lawrence, T., et al. (2023). Newly identified sex chromosomes in the Sphagnum (peat moss) genome alter carbon sequestration and ecosystem dynamics. Nat. Plants 9: 238-254.
|
| [21] |
Hisanaga, T.,Yamaoka, S.,Kawashima, T.,Higo, A.,Nakajima, K.,Araki, T.,Kohchi, T., and Berger, F. (2019). Building new insights in plant gametogenesis from an evolutionary perspective. Nat. Plants 5: 663-669.
|
| [22] |
Iwasaki, M.,Kajiwara, T.,Yasui, Y.,Yoshitake, Y.,Miyazaki, M.,Kawamura, S.,Suetsugu, N.,Nishihama, R.,Yamaoka, S.,Wanke, D., et al. (2021). Identification of the sex-determining factor in the liverwort Marchantia polymorpha reveals unique evolution of sex chromosomes in a haploid system. Curr. Biol. 31: 5522-5532.e7.
|
| [23] |
Juvany, M., and Munné-Bosch, S. (2015). Sex-related differences in stress tolerance in dioecious plants: A critical appraisal in a physiological context. J. Exp. Bot. 66: 6083-6092.
|
| [24] |
Kosová K.,Vítámvás, P.,Prášil, I.T., and Renaut, J. (2011). Plant proteome changes under abiotic stress-Contribution of proteomics studies to understanding plant stress response. J. Proteomics 74: 1301-1322.
|
| [25] |
Liang, Y.,Kang, K.,Gan, L.,Ning, S.,Xiong, J.,Song, S.,Xi, L.,Lai, S.,Yin, Y.,Gu, J., et al. (2019). Drought-responsive genes, late embryogenesis abundant group3 (LEA 3) and vicinal oxygen chelate, function in lipid accumulation in Brassica napus and Arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROS. Plant Biotechnol. J. 17: 2123-2142.
|
| [26] |
López-Hidalgo, C.,Meijón, M.,Lamelas, L., and Valledor, L. (2021). The rainbow protocol: A sequential method for quantifying pigments, sugars, free amino acids, phenolics, flavonoids and MDA from a small amount of sample. Plant Cell Environ. 44: 1977-1986.
|
| [27] |
Marchetti, F.,Cainzos, M.,Cascallares, M.,Distéfano, A.M.,Setzes, N.,López, G.A.,Zabaleta, E., and Pagnussat, G.C. (2021). Heat stress in Marchantia polymorpha: Sensing and mechanisms underlying a dynamic response. Plant Cell Environ. 44: 2134-2149.
|
| [28] |
Marks, R.A.,Smith, J.J.,VanBuren, R., and McLetchie, D.N. (2021). Expression dynamics of dehydration tolerance in the tropical plant Marchantia inflexa. Plant J. 105: 209-222.
|
| [29] |
Martin, M.V.,Fiol, D.F.,Sundaresan, V.,Zabaleta, E.J., and Pagnussat, G.C. (2013). oiwa, a female gametophytic mutant impaired in a mitochondrial manganese-superoxide dismutase, reveals crucial roles for reactive oxygen species during embryo sac development and fertilization in Arabidopsis. Plant Cell 25: 1573-1591.
|
| [30] |
Maxwell, K., and Johnson, G.N. (2000). Chlorophyll fluorescence-A practical guide. J. Exp. Bot. 51: 659-668.
|
| [31] |
McLetchie, D.N., and Puterbaugh, M.N. (2000). Population sex ratios, sex-specific clonal traits and tradeoffs among these traits in the liverwort Marchantia inflexa. Oikos 90: 227-237.
|
| [32] |
Merényi, Z.,Virágh, M.,Gluck-Thaler, E.,Slot, J.C.,Kiss, B.,Varga, T.,Geösel, A.,Hegedüs, B.,Bálint, B., and Nagy, L.G. (2022). Gene age shapes the transcriptional landscape of sexual morphogenesis in mushroom-forming fungi (Agaricomycetes). eLife 11: e71348.
|
| [33] |
Park, J.H.,Lee, S.Y.,Kim, W.Y.,Jung, Y.J.,Chae, H.B.,Jung, H.S.,Kang, C.H.,Shin, M.R.,Kim, S.Y.,Su’udi, M., et al. (2011). Heat-induced chaperone activity of serine/threonine protein phosphatase 5 enhances thermotolerance in Arabidopsis thaliana. New Phytol. 191: 692-705.
|
| [34] |
Parmesan, C., and Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37-42.
|
| [35] |
Perez-Riverol, Y.,Bai, J.,Bandla, C.,García-Seisdedos, D.,Hewapathirana, S.,Kamatchinathan, S.,Kundu, D.J.,Prakash, A.,Frericks-Zipper, A.,Eisenacher, M., et al. (2022). The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50: D543-D552.
|
| [36] |
Rizhsky, L.,Liang, H.,Shuman, J.,Shulaev, V.,Davletova, S., and Mittler, R. (2004). When defense pathways collide. the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 134: 1683-1696.
|
| [37] |
Rojek, J.,Tucker, M.R.,Pinto, S.C.,Rychłowski, M.,Lichocka, M.,Soukupova, H.,Nowakowska, J.,Bohdanowicz, J.,Surmacz, G., and Gutkowska, M. (2021). Rab-dependent vesicular traffic affects female gametophyte development in Arabidopsis. J. Exp. Bot. 72: 320-340.
|
| [38] |
Schiffthaler, B.,Van Zalen, E.,Serrano, A.R.,Street, N.R., and Delhomme, N. (2023). Seiðr: Efficient calculation of robust ensemble gene networks. Heliyon 9: e16811.
|
| [39] |
Smith, M.A., and Maravolo, N.C. (2004). The influence of spermine on the in situ expression of a protein kinase associated with senescence in Marchantia polymorpha thalli. Int. J. Plant Sci. 165: 745-751.
|
| [40] |
Tan, Q.W.,Lim, P.K.,Chen, Z.,Pasha, A.,Provart, N.,Arend, M.,Nikoloski, Z., and Mutwil, M. (2023). Cross-stress gene expression atlas of Marchantia polymorpha reveals the hierarchy and regulatory principles of abiotic stress responses. Nat. Commun. 14: 986.
|
| [41] |
Thuiller, W.,Lavorel, S.,Araújo, M.B.,Sykes, M.T., and Prentice, I.C. (2005). Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. U. S. A 102: 8245-8250.
|
| [42] |
Tougane, K.,Komatsu, K.,Bhyan, S.B.,Sakata, Y.,Ishizaki, K.,Yamato, K.T.,Kohchi, T., and Takezawa, D. (2010). Evolutionarily conserved regulatory mechanisms of abscisic acid signaling in land plants: Characterization of ABSCISIC ACID INSENSITIVE1-like Type 2C protein phosphatase in the liverwort Marchantia polymorpha. Plant Physiol. 152: 1529-1543.
|
| [43] |
Valledor, L.,Escandón, M.,Meijón, M.,Nukarinen, E.,Cañal, M.J., and Weckwerth, W. (2014a). A universal protocol for the combined isolation of metabolites, DNA, long RNAs, small RNAs, and proteins from plants and microorganisms. Plant J. 79: 173-180.
|
| [44] |
Valledor, L.,Romero-Rodríguez, M.C., and Jorrin-Novo, J.V. (2014b). Standardization of data processing and statistical analysis in comparative plant proteomics experiment. In Methods in Molecular Biology. Plant Proteomics,J.V. Jorrin-Novo,S. Komatsu,W. Weckwerth,S. Wienkoop, eds, (Totowa,NJ: Humana Press), pp. 51-60.
|
| [45] |
Valledor, L., and Weckwerth, W. (2014). An improved detergent-compatible gel-fractionation LC-LTQ-Orbitrap-MS workflow for plant and microbial proteomics. In Methods in Molecular Biology. Plant Proteomics,J.V. Jorrin-Novo,S. Komatsu,W. Weckwerth,S. Wienkoop, eds, (Totowa,NJ: Humana Press), pp. 347-358.
|
| [46] |
Van Der Does, D.,Boutrot, F.,Engelsdorf, T.,Rhodes, J.,McKenna, J.F.,Vernhettes, S.,Koevoets, I.,Tintor, N.,Veerabagu, M.,Miedes, E., et al. (2017). The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS Genet. 13: e1006832.
|
| [47] |
Wimalasekera, R.,Schaarschmidt, F.,Angelini, R.,Cona, A.,Tavladoraki, P., and Scherer, G.F.E. (2015). POLYAMINE OXIDASE2 of Arabidopsis contributes to ABA mediated plant developmental processes. Plant Physiol. Biochem. 96: 231-240.
|
| [48] |
Wu, T.-Y.,Hoh, K.L.,Boonyaves, K.,Krishnamoorthi, S., and Urano, D. (2022a). Diversification of heat shock transcription factors expanded thermal stress responses during early plant evolution. Plant Cell 34: 3557-3576.
|
| [49] |
Wu, T.-Y.,Krishnamoorthi, S.,Boonyaves, K.,Al-Darabsah, I.,Leong, R.,Jones, A.M.,Ishizaki, K.,Liao, K.-L., and Urano, D. (2022b). G protein controls stress readiness by modulating transcriptional and metabolic homeostasis in Arabidopsis thaliana and Marchantia polymorpha. Mol. Plant 15: 1889-1907.
|
RIGHTS & PERMISSIONS
2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.