The origin and morphological character evolution of the paleotropical woody bamboos

Jing-Xia Liu , Cen Guo , Peng-Fei Ma , Meng-Yuan Zhou , Ya-Huang Luo , Guang-Fu Zhu , Zu-Chang Xu , Richard I Milne , Maria S. Vorontsova , De-Zhu Li

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (10) : 2242 -2261.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (10) : 2242 -2261. DOI: 10.1111/jipb.13751
Research Article

The origin and morphological character evolution of the paleotropical woody bamboos

Author information +
History +
PDF

Abstract

The woody bamboos (Bambusoideae) exhibit distinctive biological traits within Poaceae, such as highly lignified culms, rapid shoot growth, monocarpic mass flowering and nutlike or fleshy caryopses. Much of the remarkable morphological diversity across the subfamily exists within a single hexaploid clade, the paleotropical woody bamboos (PWB), making it ideal to investigate the factors underlying morphological evolution in woody bamboos. However, the origin and biogeographical history of PWB remain elusive, as does the effect of environmental factors on the evolution of their morphological characters. We generated a robust and time-calibrated phylogeny of PWB using single nucleotide polymorphisms retrieved from optimized double digest restriction site associated DNA sequencing, and explored the evolutionary trends of habit, inflorescence, and caryopsis type in relation to environmental factors including climate, soil, and topography. We inferred that the PWB started to diversify across the Oligocene–Miocene boundary and formed four major clades, that is, Melocanninae, Racemobambosinae s.l. (comprising Dinochloinae, Greslanlinae, Racemobambosinae s.str. and Temburongiinae), Hickeliinae and Bambusinae s.l. (comprising Bambusinae s.str. plus Holttumochloinae). The ancestor of PWB was reconstructed as having erect habit, indeterminate inflorescence and basic caryopsis. The characters including climbing/scrambling habit, determinate inflorescence, and nucoid/bacoid caryopsis have since undergone multiple changes and reversals during the diversification of PWB. The evolution of all three traits was correlated with, and hence likely influenced by, aspects of climate, topography, and soil, with climate factors most strongly correlated with morphological traits, and soil factors least so. However, topography had more influence than climate or soil on the evolution of erect habit, whereas both factors had greater effect on the evolution of bacoid caryopsis than did soil. Our results provide novel insights into morphological diversity and adaptive evolution in bamboos for future ecological and evolutionary research.

Keywords

Bambuseae / biogeography / ddRAD-seq / environmental factors / morphological evolution / phylogenomics

Cite this article

Download citation ▾
Jing-Xia Liu, Cen Guo, Peng-Fei Ma, Meng-Yuan Zhou, Ya-Huang Luo, Guang-Fu Zhu, Zu-Chang Xu, Richard I Milne, Maria S. Vorontsova, De-Zhu Li. The origin and morphological character evolution of the paleotropical woody bamboos. Journal of Integrative Plant Biology, 2024, 66(10): 2242-2261 DOI:10.1111/jipb.13751

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andrews, K.R.,Good, J.M.,Miller, M.R.,Luikart, G., and Hohenlohe, P.A. (2016). Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17: 81-92.

[2]

Andrews, S. (2015). FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

[3]

Bamboo Phylogeny Group (BPG). (2012). An updated tribal and subtribal classification of the bamboos (Poaceae: Bambusoideae). Bamboo Sci. Cult. 24: 1-10.

[4]

Barton, K. (2020). MuMIn: Multi-model inference. Available from https://CRAN.R-project.org/package=MuMIn

[5]

Batjes, N.H.,Ribeiro, E., and van Oostrum, A. (2020). Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth Syst. Sci. Data 12: 299-320.

[6]

Bellot, S.,Bayton, R.P.,Couvreur, T.L.P.,Dodsworth, S.,Eiserhardt, W.L.,Guignard, M.S.,Pritchard, H.W.,Roberts, L.,Toorop, P.E., and Baker, W.J. (2020). On the origin of giant seeds: The macroevolution of the doublecoconut (Lodoicea maldivica) and its relatives (Borasseae, Arecaceae). New Phytol. 228: 1134-1148.

[7]

Bouckaert, R.,Vaughan, T.G.,Barido-Sottani, J.,Duchene, S.,Fourment, M.,Gavryushkina, A.,Heled, J.,Jones, G.,Kuhnert, D.,De Maio, N., et al. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15: e1006650.

[8]

Boyko, J.D., and Beaulieu, J.M. (2021). Generalized hidden Markov models for phylogenetic comparative datasets. Methods Ecol. Evol. 12: 468-478.

[9]

Brandrud, M.K.,Baar, J.,Lorenzo, M.T.,Athanasiadis, A.,Bateman, R.M.,Chase, M.W.,Hedrén, M., and Paun, O. (2020). Phylogenomic relationships of diploids and the origins of allotetraploids in Dactylorhiza (Orchidaceae). Syst. Biol. 69: 91-109.

[10]

Buerki, S.,Devey, D.S.,Callmander, M.W.,Phillipson, P.B., and Forest, F. (2013). Spatio-temporal history of the endemic genera of Madagascar. Bot. J. Linn. Soc. 171: 304-329.

[11]

Callmander, M.W.,Phillipson, P.B.,Schatz, G.E.,Andriambololonera, S.,Rabarimanarivo, M.,Rakotonirina, N.,Raharimampionona, J.,Chatelain, C.,Gautier, L., and Lowry, P.P. (2011). The endemic and non-endemic vascular flora of Madagascar updated. Plant Ecol. Evol. 144: 121-125.

[12]

Catchen, J.M.,Amores, A.,Hohenlohe, P.,Cresko, W., and Postlethwait, J.H. (2011). Stacks: Building and genotyping loci de novo from short read sequences. G3: Genes, Genomes. Genetics 1: 171-182.

[13]

Catchen, J.,Hohenlohe, P.A.,Bassham, S.,Amores, A., and Cresko, W.A. (2013). Stacks: an analysis tool set for population genomics. Mol. Ecol. 22: 3124-3140.

[14]

Chen, S.C.,Cornwell, W.K.,Zhang, H.X., and Moles, A.T. (2017). Plants show more flesh in the tropics: Variation in fruit type along latitudinal and climatic gradients. Ecography 40: 531-538.

[15]

Chokthaweepanich, H. (2014). Phylogenetics and evolution of the paleotropical Woody Bamboos (Poaceae: Bambusoideae: Bambuseae). PhD Dissertation. Iowa State University.

[16]

Clayton, W.D.,Vorontsova, M.S.,Harman, K.T., and Williamson, H. (2016) GrassBase-The Online World Grass Flora. http://www.kew.org/data/grasses-db.html

[17]

Dewar, R.E., and Richard, A.F. (2007). Evolution in the hypervariable environment of Madagascar. Proc. Natl. Acad. Sci. U. S. A. 104: 13723-13727.

[18]

Ding, L.,Spicer, R.A.,Yang, J.,Xu, Q.,Cai, F.,Li, S.,Wang, H.,Spicer, T.E.V., and Yue, Y. (2017). Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology 45: 215-218.

[19]

Doyle, J.A. (2005). Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses. Grana 44: 227-251.

[20]

Doyle, J.A. (2007). Systematic value and evolution of leaf architecture across the angiosperms in light of molecular phylogenetic analyses. CFS Courier Forschungsinstitut Senckenberg 258: 21-37.

[21]

Doyle, J.J., and Doyle, J.L. (1987). A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem. Bull. 19: 11-15.

[22]

Du, Z.Y.,Cheng, J., and Xiang, Q.Y. (2024). RAD-seq data provide new insights into biogeography, diversity anomaly, and species delimitation in eastern Asian-North American disjunct clade Benthamidia of Cornus (Cornaceae). J Syst. Evol. 62: 1-19.

[23]

Dransfield, S.,Widjaja, E.A. (1995). Plant resources of South-East Asia No 7. Bamboos. PROSEA Foundation, Bogor,Indonesia.

[24]

Endress, P.K. (2010). Flower structure and trends of evolution in eudicots and their major subclades. Ann. Mo. Bot. Gard. 97: 541-583.

[25]

Endress, P.K. (2011a). Angiosperm ovules: Diversity, development, and evolution. Ann. Bot. 107: 1465-1489.

[26]

Endress, P.K. (2011b). Evolutionary diversification of the flowers in angiosperms. Am. J. Bot. 98: 370-396.

[27]

Fick, S.E., and Hijmans, R.J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37: 4302-4315.

[28]

Fritz, S.A., and Purvis, A. (2010). Selectivity in mammalian extinction risk and threat types: A new measure of phylogenetic signal strength in binary traits. Biol. Conserv. 24: 1042-1051.

[29]

Gamble, J.S. (1923). Neohouzeaua, a new genus of Bamboos. Bull. Misc. Inform. Kew 1923: 89-93.

[30]

Gao, Y.,Dai, D.,Wang, H.,Wu, W.,Xiao, P.,Wu, L.,Wei, X., and Yin, S. (2024). Genomic insightsinto differentiation and adaptation of Amorphophallus yunnanensis in the mountainous region of Southwest China. Ecol. Evol. 14: e10861.

[31]

Gallaher, T.J.,Peterson, P.M.,Soreng, R.J.,Zuloaga, F.O.,Li, D.Z.,Clark, L.G.,Tyrrell, C.D.,Welker, C.A.D.,Kellogg, E.A., and Teisher, J.K. (2022). Grasses through space and time: An overview of the biogeographical and macroevolutionary history of Poaceae. J. Syst. Evol. 60: 522-569.

[32]

Goh, W.L.,Sungkaew, S.,Teerawatananon, A.,Ohrnberger, D.,Widjaja, E.A.,Sabu, K.K.,Gopakumar, B.,Koshy, K.C.,Xia, N.H., and Wong, K.M. (2020). The phylogenetic position and taxonomic status of the Southeast and South Asian bamboo genera Neohouzeaua and Ochlandra (Poaceae: Bambusoideae). Phytotaxa 472: 107-122.

[33]

Guo, C.,Luo, Y.,Gao, L.M.,Yi, T.S.,Li, H.T.,Yang, J.B., and Li, D.Z. (2023). Phylogenomics and the flowering plant tree of life. J. Integr. Plant Biol. 65: 299-323.

[34]

Guo, C.,Ma, P.F.,Yang, G.Q.,Ye, X.Y.,Guo, Y.,Liu, J.X.,Liu, Y.L.,Eaton, D.A.R.,Guo, Z.H., and Li, D.Z. (2021). Parallel ddRAD and genome skimming analyses reveal a radiative and reticulate evolutionary history of the temperate bamboos. Syst. Biol. 70: 756-773.

[35]

Guo, Z.H.,Ma, P.F.,Yang, G.Q.,Hu, J.Y.,Liu, Y.L.,Xia, E.H.,Zhong, M.C.,Zhao, L.,Sun, G.L.,Xu, Y.X., et al. (2019). Genome sequences provide insights into the reticulate origin and unique traits of woody bamboos. Mol. Plant 12: 1353-1365.

[36]

Haevermans, T.,Mantuano, D.,Zhou, M.Y.,Lamxay, V.,Haevermans, A.,Blanc, P., and Li, D.Z. (2020). Discovery of the first succulent bamboo (Poaceae, Bambusoideae) in a new genus from Laos’ karst areas, with a unique adaptation to seasonal drought. PhytoKeys 156: 125-137.

[37]

Harris, I.,Osborn, T.J.,Jones, P., and Lister, D. (2020). Version 4 of the CRU TS monthly gigh-resolution gridded multivariate climate dataset. Sci. Data 7: 1-17.

[38]

Herrera, C.M. (1992). Historical effects and sorting processes as explanations for contemporary ecological patterns: Character syndromes in Mediterranean woody plants. Am. Nat. 140: 421-446.

[39]

Hijmans, R.J.,Cameron, S.E.,Parra, J.L.,Jones, G., and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965-1978.

[40]

Holttum, R.E. (1956). The classification of bamboos. Phytomorphology 6: 73-90.

[41]

Kelchner, S.A., and BPG (2013). Higher level phylogenetic relationships within the bamboos (Poaceae: Bambusoideae) based on five plastid markers. Mol. Phylogenet. Evol. 67: 404-413.

[42]

Kleinkopf, J.A.,Roberts, W.R.,Wagner, W.L., and Roalson, E.H. (2019). Diversification of Hawaiian Cyrtandra (Gesneriaceae) under the influence of incomplete lineage sorting and hybridization. J. Syst. Evol. 57: 561-578.

[43]

Kooyman, R.M.,Morley, R.J.,Crayn, D.M.,Joyce, E.M.,Rossetto, M.,Slik, J.W.F.,Strijk, J.S.,Su, T.,Yap, J.Y.S., and Wilf, P. (2019). Origins and assembly of Malesian rainforests. Annu. Rev. Ecol. Evol. Syst. 50: 119-143.

[44]

Kozak, K.H., and Wiens, J.J. (2010). Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecol. Lett. 13: 1378-1389.

[45]

Leo, B. (2001). Random forests. Mach. Learn. 45: 5-32.

[46]

Levin, G.A.,Cardinal-McTeague, W.M.,Steinmann, V.M., and Sagun, V.G. (2022). Phylogeny, classification, and character evolution of Acalypha (Euphorbiaceae: Acalyphoideae). Syst. Bot. 47: 477-497.

[47]

Li, D.Z. (1997). The flora of China Bambusoideae project-problems and current understanding of bamboo taxonomy in China. In The Bamboos. Chapman, G.P., ed. (London: Academic Press), pp. 61-81.

[48]

Li, X.Y.,Cai, M.Y.,Wang, M.Q.,Wu, X.T.,Ueno, S.,Uchiyama, K.,Onuma, Y.,Dai, M.J.,Tao, Y.L., et al. (2024). Genetic diversity, genetic differentiation and demographic history of Cryptomeria (Cupressaceae), a tertiary relict plant in East Asia based on RAD sequencing. Eur. J. For. Res. 143: 333-347.

[49]

Liaw, A., and Wiener, M. (2002). Classification and regression by random forest. R News 2: 18-22.

[50]

Liow, L.H.,Quental, T.B., and Marshall, C.R. (2010). When can decreasing diversification rates be detected with molecular phylogenies and the fossil record? Syst. Biol. 59: 646-659.

[51]

Liu, Y.,Liu, H.,Baastrup-Spohr, L.,Z, Z.,Li, W.,Pan, J.F., and Cao, Y. (2023a). Allometric relationships between leaf and petiole traits across 31 floating-leaved plants reveal a different adaptation pattern from terrestrial plants. Ann. Bot. 131: 534-552.

[52]

Liu, J.X.,Xu, Z.C.,Zhang, Y.X.,Zhou, M.Y., and Li, D.Z. (2023b). The identity of Dinochloa species and enumeration of Melocalamus (Poaceae: Bambusoideae) in China. Plant Divers. 45: 133-146.

[53]

Liu, J.X.,Zhou, M.Y.,Yang, G.Q.,Zhang, Y.X.,Ma, P.F.,Guo, C.,Vorontsova, M.S., and Li, D.Z. (2020). ddRAD analyses reveal a credible phylogenetic relationship of the four main genera of Bambusa-Dendrocalamus-Gigantochloa complex (Poaceae: Bambusoideae). Mol. Phylogenet. Evol. 146: 106758.

[54]

Liu, Q.,Sterck, F.J.,Medina-Vega, J.A.,Sha, L.Q.,Cao, M.,Bongers, F.,Zhang, J.L., and Poorter, L. (2021). Soil nutrients, canopy gaps and topography affect liana distribution in a tropical seasonal rain forest in southwestern China. J Veg. Sci. 32: e12951.

[55]

López-Martínez, A.M.,Magallón, S.,von Balthazar, M.,Schönenberger, J.,Sauquet, H., and Chartier, M. (2023). Angiosperm flowers reached their highest morphological diversity early in their evolutionary history. New Phytol. 241: 1348-1360.

[56]

Louca, S.P., and Pennell, M.W. (2020). Extant time trees are consistent with a myriad of diversification histories. Nature 580: 502-505.

[57]

Ma, P.F.,Liu, Y.L.,Guo, C.,Jin, G.H.,Guo, Z.H.,Mao, L.,Yang, Y.Z.,Niu, L.Z.,Wang, Y.J.,Clark, L.G., et al. (2024). Genome assemblies of 11 bamboo species highlight diversification induced by dynamic subgenome dominance. Nat. Genet. 56: 710-720.

[58]

Matzke, N.J. (2014). Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades. Syst. Biol. 63: 951-970.

[59]

Matzke, N.J. (2018). BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary analysis with R scripts version 1.1.1. https://zenodo.org/records/1478250

[60]

Meseguer, A.S.,Carrillo, R.,Graham, S.W., and Sanmartín, I. (2022). Macroevolutionary dynamics in the transition of angiosperms to aquatic environments. New Phytol. 235: 344-355.

[61]

Miller, K.G.,Kominz, M.A.,Browning, J.V.,Wright, J.D.,Mountain, G.S.,Katz, M.E.,Sugarman, P.J.,Cramer, B.S.,Christieblick, N., and Pekar, S.F. (2005). The Phanerozoic record of global sea-level change. Science 310: 1293-1298.

[62]

Moles, A.T.,Westoby, M., and Eriksson, O. (2006). Seed size and plant strategy across the whole life cycle. Oikos 113: 91-105.

[63]

Moles, A.T.,Ackerly, D.D.,Webb, C.O.,Tweddle, J.C.,Dickie, J.B., and Westoby, M. (2005). A brief history of seed size. Science 80: 576-580.

[64]

Morlon, H. (2014). Phylogenetic approaches for studying diversification. Ecol. Lett. 17: 508-525.

[65]

Nogales, M.,Heleno, R.,Traveset, A., and Vargas, P. (2012). Evidence for overlooked mechanisms of long-distance seed dispersal to and between oceanic islands. New Phytol. 194: 313-317.

[66]

Ohrnberger, D. (1999). The bamboos of the world: Annotated nomenclature and literature of the species and the higher and lower taxa. Elsevier, Amsterdam.

[67]

Pagel, M.,Meade, A., and Barker, D. (2004). Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53: 673-684.

[68]

Pagel, M., and Meade, A. (2006). Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am. Nat. 167: 808-825.

[69]

Paradis, E.,Claude, J., and Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289-290.

[70]

Pease, J.B.,Brown, J.W.,Walker, J.F.,Hinchliff, C.E., and Smith, S.A. (2018). Quartet Sampling distinguishes lack of support from conflicting support in the green plant tree of life. Am. J. Bot. 105: 385-403.

[71]

Pinheiro, J.,Bates, D.,DebRoy, S.,Sarkar, D., and R Core Team. (2021). nlme: Linear and Nonlinear Mixed Effects Models. Available from https://CRAN.R-project.org/package=nlme

[72]

R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,Vienna. https://www.R-project.org

[73]

Rabosky, D.L.,Grundler, M.,Anderson, C.,Title, P.,Shi, J.J.,Brown, J.W.,Huang, H.,Larson, J.G., and Kembel, S. (2014). BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5: 701-707.

[74]

Rabosky, D.L.,Mitchell, J.S., and Chang, J. (2017). Is BAMM Flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Syst. Biol. 66: 477-498.

[75]

Rambaut, A.,Drummond, A.J.,Xie, D.,Baele, G., and Suchard, M.A. (2018). Posterior summarization in bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67: 901-904.

[76]

Ronse, D.,Craene, L.P.,Soltis, D.E., and Soltis, P.S. (2003). Evolution of floral structures in the basal angiosperms. Int. J. Plant Sci. 164: S329-S363.

[77]

Ruiz-Sanchez, E.,Peredo, L.C.,Santacruz, J.B., and Ayala-Barajas, R. (2017). Bamboo flowers visited by insects: Do insects play a role in the pollination of bamboo flowers? Plant Syst. Evol. 303: 51-59.

[78]

Ruiz-Sanchez, E. and Sosa, V. (2015). Origin and evolution of fleshy fruit in woody bamboos. Mol. Phylogenet. Evol. 91: 123-134.

[79]

Soderstrom, T.R., and Ellis, R.P. (1987). The position of bamboo genera and allies in a system of grass classification. In Grass systematics and evolution. Soderstrom T.R.,Hilu K.W.,Campbell C.S.,Barkworth M.E., eds, (Washington,DC: Smithsonian Institution Press), pp. 225-238.

[80]

Soderstrom, T.R. (1981). Some evolutionary trends in the Bambusoideae (Poaceae). Ann. Missouri Bot. Gard. 68: 15-47.

[81]

Soares, L.S., and Freitas, L.B. (2024). The phylogeographic journey of a plant species from lowland to highlands during the Pleistocene. Sci. Rep. 14: 3825.

[82]

Soltis, D.E.,Mort, M.E.,Latvis, M.,Mavrodiev, E.V.,Meara, B.C.O.,Soltis, P.S.,Burleigh, J.G., and Rubio, deC.asasR. (2013). Phylogenetic relationships and character evolution analysis of Saxifragales using a supermatrix approach. Am. J. Bot. 100: 916-929.

[83]

Soreng, R.J.,Peterson, P.M.,Romaschenko, K.,Davidse, G.,Zuloaga, F.O.,Judziewicz, E.J.,Filgueiras, T.S.,Davis, J.I., and Morrone, O. (2015). A worldwide phylogenetic classification of the Poaceae (Gramineae). J. Syst. Evol. 53: 117-137.

[84]

Soreng, R.J.,Peterson, P.M.,Zuloaga, F.O.,Romaschenko, K.,Clark, L.G.,Teisher, J.K.,Gillespie, L.J.,Barbera, P.,Welker, C.A.,Kellogg, E.A., et al. (2022). A worldwide phylogenetic classification of the Poaceae (Gramineae) III: An update. J. Syst. Evol. 60: 476-521.

[85]

Spicer, R.A. (2017). Tibet, the Himalaya, Asian monsoons and biodiversity-In what ways are they related? Plant Divers. 39: 233-244.

[86]

Srivastava, G.,Su, T.,Mehrotra, R.C.,Kumari, P., and Shankar, U. (2019). Bamboo fossils from Oligo-Pliocene sediments of northeast India with implications on their evolutionary ecology and biogeography in Asia. Rev. Palaeobot. Palynol. 262: 17-27.

[87]

Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313.

[88]

Stephens, R.E.,Gallagher, R.V.,Dun, L.,Cornwell, W., and Sauquet, H. (2023). Insect pollination for most of angiosperm evolutionary history. New Phytol. 240: 880-891.

[89]

Stevens, P.F. (2001). Angiosperm Phylogeny Website, version 14. http://www.mobot.org/MOBOT/research/APweb/

[90]

Strömberg, C.A.E. (2011). Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 39: 517-544.

[91]

Stull, G.W.,Schori, M.,Soltis, D.S., and Soltis, P.S. (2018). Character evolution and missing (morphological) data across Asteridae. Am. J. Bot. 105: 470-479.

[92]

Title, P.O., and Bemmels, J.B. (2018). ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41: 245-236.

[93]

Triplett, J.K.,Clark, L.G.,Fisher, A.E., and Wen, J. (2014). Independent allopolyploidization events preceded speciation in the temperate and tropical woody bamboos. New Phytol. 204: 66-73.

[94]

Villaverde, T.,Maguilla, E.,Luceño, M., and Hipp, A.L. (2021). Assessing the sensitivity of divergence time estimates to locus sampling, calibration points, and model priors in a RAD-seq phylogeny of Carex section Schoenoxiphium. J. Syst. Evol. 59: 687-697.

[95]

Vorontsova, M.S.,Clark, L.G.,Dransfield, J.,Govaerts, R., and Baker, W.J. (2016). World Checklist of Bamboos and Rattans. INBAR Technical Report. International Network of Bamboo & Rattan, Beijing.

[96]

Wambulwa, M.C.,Milne, R.,Wu, Z.Y.,Spicer, R.A.,Provan, J.,Luo, Y.H.,Zhu, G.F.,Wang, W.T.,Wang, H.,Gao, L.M., et al. (2021). Spatiotemporal maintenance of flora in the Himalaya biodiversity hotspot: Current knowledge and future perspectives. Ecol. Evol. 11: 10794-10812.

[97]

Wang, G.,Ives, A.R.,Zhu, H.,Tan, Y.H.,Chen, S.C.,Yang, J., and Wang, B. (2021). Phylogenetic conservatism explains why plants are more likely to produce fleshy fruits in the tropics. Ecology 103: e03555.

[98]

Willson, M.F., and Traveset, A. (2010). The ecology of seed dispersal. In Seeds. The ecology of regeneration in plant communities. Fenner, M., ed, (Wallingford,UK: CABI Publishing), pp. 85-110.

[99]

Wong, K.M.,Goh, W.L.,Chokthaweepanich, H.,Clark, L.G.,Sungkaew, S.,Widjaja, E., and Xia, N.H. (2016). A subtribal classification of Malesian and South Pacific woody bamboos (Poaceae: Bambusoideae: Bambuseae) informed by morphological and molecular studies. Sandakania 22: 11-36.

[100]

Wu, F.L.,Fang, X.M.,Yang, Y.B.,Guillaume, D.N.,Nie, J.S.,Zhang, T., and Han, W.X. (2022). Reorganization of Asian climate in relation to Tibetan Plateau uplift. Nat. Rev. Earth Environ. 3: 684-700.

[101]

Wu, Z.Y.,Liu, J.,Provan, J.,Wang, H.,Chen, C.J.,Cadotte, M.W.,Luo, Y.H.,Amorim, B.S.,Li, D.Z., and Milne, R.I. (2018). Testing Darwin’s transoceanic dispersal hypothesis for the inland nettle family (Urticaceae). Ecol. Lett. 21: 1515-1529.

[102]

Wu, Z.Y.,Milne, R.I.,Liu, J.,Nathan, R.,Corlett, R.T., and Li, D.Z. (2023). The establishment of plants following long-distance dispersal. Trends Ecol. Evol. 38: 289-300.

[103]

Wysocki, W.P.,Clark, L.G.,Attigala, L.,Ruiz-Sanchez, E., and Duvall, M.R. (2015). Evolution of the bamboos (Bambusoideae; Poaceae): A full plastome phylogenomic analysis. BMC Evol. Biol. 15: 50.

[104]

Xiang, Y.,Zhang, T.,Zhao, Y.,Dong, H.,Chen, H.,Hu, Y.,Huang, C.H.,Xiang, J., and Ma, H. (2024). Angiosperm-wide analysis of fruit and ovary evolution aided by a new nuclear phylogeny supports association of the same ovary type with both dry and fleshy fruits. J. Integr. Plant Biol. 66: 228-251.

[105]

Yang, G.Q.,Chen, Y.M.,Wang, J.P.,Guo, C.,Zhao, L.,Wang, X.Y.,Guo, Y.,Li, L.,Li, D.Z., and Guo, Z.H. (2016). Development of a universal and simplified ddRAD library preparation approach for SNP discovery and genotyping in angiosperm plants. Plant Methods 12: 1-17.

[106]

Yang, H.Q.,Yang, J.B.,Peng, Z.H.,Gao, J.,Yang, Y.M.,Peng, S., and Li, D.Z. (2008). A molecular phylogenetic and fruit evolutionary analysis of the major groups of the paleotropical woody bamboos (Gramineae: Bambusoideae) based on nuclear ITS, GBSSI gene and plastid trnL-F DNA sequences. Mol. Phylogenet. Evol. 48: 809-824.

[107]

Ye, X.Y.,Ma, P.F.,Yang, G.Q.,Guo, C.,Zhang, Y.X.,Chen, Y.M.,Guo, Z.H., and Li, D.Z. (2019). Rapid diversification of alpine bamboos associated with the uplift of the Hengduan Mountains. J. Biogeogr. 46: 2678-2689.

[108]

Yoder, A.D., and Nowak, D. (2006). Has Vicariance or Dispersal Been the Predominant Biogeographic Force in Madagascar? Only Time Will Tell. Annu. Rev. Ecol. Evol. Syst. 37: 405-431.

[109]

You, J.L.,Lougheed, S.C.,Zhao, Y.,Zhang, G.J.,Liu, W.S.,Lu, F.,Wang, Y.G.,Zhang, W.J.,Yang, J.,Qiong, L., et al. (2022). Comparative phylogeography study reveals introgression and incomplete lineage sorting during rapid diversication of Rhodiola. Ann. Bot. 129: 185-200.

[110]

Yu, Q.Q.,Ling, Y.,Xiong, Y.L.,Zhao, W.D.,Xiong, Y.,Dong, Z.X.,Yang, J.,Zhao, J.M.,Zhang, X.Q., and Ma, X. (2022). RAD-seq as an effective strategy for heterogenous variety identification in plants-A case study in Italian Ryegrass (Lolium multiflorum). BMC Plant Biol. 22: 1-12.

[111]

Zanne, A.E.,Tank, D.C.,Cornwell, W.K.,Eastman, J.M.,Smith, S.A.,FitzJohn, R.G.,McGlinn, D.J.,Meara, B.C.O.,Moles, A.T., et al. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature 506: 89-92.

[112]

Zhang, L.,Morales-Briones, D.F.,Li, Y.,Zhang, G.,Zhang, T.,Huang, C.-H.,Guo, P.,Zhang, K.,Wang, Y.,Wang, H., et al. (2023). Phylogenomics insights into gene evolution, rapid species diversification, and morphological innovation of the apple tribe (Maleae, Rosaceae). New Phytol. 240: 2102-2120.

[113]

Zhang, X.Z.,Zeng, C.X.,Ma, P.F.,Haevermans, T.,Zhang, Y.X.,Zhang, L.N.,Guo, Z.H., and Li, D.Z. (2016). Multi-locus plastid phylogenetic biogeography supports the Asian hypothesis of the temperate woody bamboos (Poaceae: Bambusoideae). Mol. Phylogenet. Evol. 96: 118-129.

[114]

Zhang, Y.X.,Guo, C., and Li, D.Z. (2020). A new subtribal classification of Arundinarieae (Poaceae, Bambusoideae) with the description of a new genus. Plant Divers. 42: 127-134.

[115]

Zhao, Y.,Cao, H.,Xu, W.,Chen, G.,Lian, J., et al. (2018). Contributions of precipitation and temperature to the large scale geographic distribution of fleshy-fruited plant species: Growth form matters. Sci. Rep. 8: 17017.

[116]

Zhou, M.Y.,Liu, J.X.,Ma, P.F.,Yang, J.B., and Li, D.Z. (2022). Plastid phylogenomics shed lights on intergeneric relationships and spatio-temporal evolutionary history of Melocanninae (Poaceae: Bambusoideae). J. Syst. Evol. 60: 640-652.

[117]

Zhou, M.Y.,Zhang, Y.X.,Haevermans, T., and Li, D.Z. (2017). Towards a complete generic level plastid phylogeny of the paleotropical woody bamboos (Poaceae: Bambusoideae). Taxon 66: 539-553.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/