An orchestrated ethylene–gibberellin signaling cascade contributes to mesocotyl elongation and emergence of rice direct seeding

Yusong Lyu , Xinli Dong , Shipeng Niu , Ruijie Cao , Gaoneng Shao , Zhonghua Sheng , Guiai Jiao , Lihong Xie , Shikai Hu , Shaoqing Tang , Xiangjin Wei , Peisong Hu

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (7) : 1427 -1439.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (7) : 1427 -1439. DOI: 10.1111/jipb.13671
Research Article

An orchestrated ethylene–gibberellin signaling cascade contributes to mesocotyl elongation and emergence of rice direct seeding

Author information +
History +
PDF

Abstract

A mechanized direct seeding of rice with less labor and water usage, has been widely adopted. However, this approach requires varieties that exhibit uniform seedling emergence. Mesocotyl elongation (ME) offers the main drive of fast emergence of rice seedlings from soils; nevertheless, its genetic basis remains unknown. Here, we identify a major rice quantitative trait locus Mesocotyl Elongation1 (qME1), an allele of the Green Revolution gene Semi-Dwarf1 (SD1), encoding GA20-oxidase for gibberellin (GA) biosynthesis. ME1 expression is strongly induced by soil depth and ethylene. When rice grains are direct-seeded in soils, the ethylene core signaling factor OsEIL1 directly promotes ME1 transcription, accelerating bioactive GA biosynthesis. The GAs further degrade the DELLA protein SLENDER RICE 1 (SLR1), alleviating its inhibition of rice PHYTOCHROME-INTERACTING FACTOR-LIKE13 (OsPIL13) to activate the downstream expansion gene OsEXPA4 and ultimately promote rice seedling ME and emergence. The ancient traits of long mesocotyl and strong emergence ability in wild rice and landrace were gradually lost in company with the Green Revolution dwarf breeding process, and an elite ME1-R allele (D349H) is found in some modern Geng varieties (long mesocotyl lengths) in northern China, which can be used in the direct seeding and dwarf breeding of Geng varieties. Furthermore, the ectopic and high expression of ME1 driven by mesocotyl-specific promoters resulted in rice plants that could be direct-seeded without obvious plant architecture or yield penalties. Collectively, we reveal the molecular mechanism of rice ME, and provide useful information for breeding new Green Revolution varieties with long mesocotyl suitable for direct-seeding practice.

Keywords

rice ( Oryza sativa L.) / direct seeding / Green Revolution / mesocotyl elongation / ethylene / gibberellin / semi-dwarf1 (SD1)

Cite this article

Download citation ▾
Yusong Lyu, Xinli Dong, Shipeng Niu, Ruijie Cao, Gaoneng Shao, Zhonghua Sheng, Guiai Jiao, Lihong Xie, Shikai Hu, Shaoqing Tang, Xiangjin Wei, Peisong Hu. An orchestrated ethylene–gibberellin signaling cascade contributes to mesocotyl elongation and emergence of rice direct seeding. Journal of Integrative Plant Biology, 2024, 66(7): 1427-1439 DOI:10.1111/jipb.13671

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Choi, D.S.,Lee, Y.,Cho, H.T., and Kende, H. (2003). Regulation of expansin gene expression affects growth and development in transgenic rice plants. Plant Cell 15:1386–1398.

[2]

Dong, X.L.,Yang, Z.,Zhang, Y.Q.,Rong, F.X.,Du, J.H.,Hong, Z.Y.,Hu, P.S., and Lue, Y.S. (2024). OsbZIP01 Affects Plant Growth and Development by Regulating in Rice. Rice Sci. 31:77–86.

[3]

Edzesi, W.M.,Dang, X.J.,Liu, E.R.,Bandoh, W.K.N.,Gakpetor, P.M.,Ofori, D.A., and Hong, D.L. (2023). Screening germplasm and detecting QTLs for mesocotyl elongation trait in rice (Oryza sativa L.) by association mapping. BMC Genomic Data 24:8.

[4]

Eshed, Y., and Lippman, Z.B. (2019). Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 366:705–770.

[5]

Farooq, M.,Siddique, K.H.M.,Rehman, H.,Aziz, T.,Lee, D.J., and Wahid, A. (2011). Rice direct seeding: Experiences, challenges and opportunities. Soil Till. Res. 111:87–98.

[6]

Feng, F.J.,Mei, H.W.,Fan, P.Q.,Li, Y.N.,Xu, X.Y.,Wei, H.B.,Yan, M., and Luo, L.J. (2017). Dynamic transcriptome and phytohormone profiling along the time of light exposure in the mesocotyl of rice seedling. Sci. Rep. 7:11961.

[7]

Feng, S.H.,Martinez, C.,Gusmaroli, G.,Wang, Y.,Zhou, J.L.,Wang, F.,Chen, L.Y.,Yu, L.,Iglesias-Pedraz, J.M.,Kircher, S., et al. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451:475–479.

[8]

Fu, J.H.,Chu, J.F.,Sun, X.H.,Wang, J.D., and Yan, C.Y. (2012). Simple, rapid, and simultaneous assay of multiple carboxyl containing phytohormones in wounded tomatoes by UPLC-MS/MS using single SPE purification and isotope dilution. Anal. Sci. 28:1081–1087.

[9]

Kuroh, T.,Nagai, K.,Gamuyao, R.,Wang, D.R.,Furuta, T.,Nakamori, M.,Kitaoka, T.,Adachi, K.,Minami, A.,Mori, Y., et al. (2018). Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science 361:181–185.

[10]

Lee, H.S.,Sasaki, K.,Higashitani, A.,Ahn, S.N., and Sato, T. (2012). Mapping and characterization of quantitative trait loci for mesocotyl elongation in rice (Oryza sativa L.). Rice 5:13.

[11]

Lee, H.S.,Sasaki, K.,Kang, J.W.,Sato, T.,Song, W.Y., and Ahn, S.N. (2017). Mesocotyl elongation is essential for seedling emergence under deep-seeding condition in rice. Rice 10:32.

[12]

Li, S.,Tian, Y.H.,Wu, K.,Ye, Y.F.,Yu, J.P.,Zhang, J.Q.,Liu, Q.,Hu, M.Y.,Li, H.,Tong, Y.P., et al. (2018). Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560:595–600.

[13]

Liu, H.Y.,Zhan, J.H.,Li, J.L.,Lu, X.,Liu, J.D.,Wang, Y.M.,Zhao, Q.Z., and Ye, G.Y. (2020). Genome-Wide Association Study (GWAS) for mesocotyl elongation in rice (Oryza sativa L.) under multiple culture conditions. Genes-Basel 11:49.

[14]

Lu, Q.,Zhang, M.C.,Niu, X.J.,Wang, C.H.,Xu, Q.,Feng, Y.,Wang, S.,Yuan, X.P.,Yu, H.Y.,Wang, Y.P., et al. (2016). Uncovering novel loci for mesocotyl elongation and shoot length in indica rice through genome-wide association mapping. Planta 243:645–657.

[15]

Lv, Y.,Shao, G.,Jiao, G.,Sheng, Z.,Xie, L.,Hu, S.,Tang, S.,Wei, X., and Hu, P. (2021). Targeted mutagenesis of POLYAMINE OXIDASE 5 that negatively regulates mesocotyl elongation enables the generation of direct-seeding rice with improved grain yield. Mol. Plant 14:344–351.

[16]

Lv, Y.S.,Shao, G.N.,Qiu, J.H.,Jiao, G.A.,Sheng, Z.H.,Xie, L.H.,Wu, Y.W.,Tang, S.Q.,Wei, X.J., and Hu, P.S. (2017). White Leaf and Panicle 2, encoding a PEP-associated protein, is required for chloroplast biogenesis under heat stress in rice. J. Exp. Bot. 68:5147–5160.

[17]

Lyu, Y.S.,Wei, X.J.,Zhong, M.,Niu, S.P.,Ahmad, S.,Shao, G.N.,Jiao, G.A.,Sheng, Z.H.,Xie, L.H.,Hu, S.K., et al. (2020). Integrated transcriptome, small RNA, and degradome analysis to elucidate the regulation of rice seedling mesocotyl development during the passage from darkness to light. Crop J. 8:918–928.

[18]

Ma, B.,He, S.J.,Duan, K.X.,Yin, C.C.,Chen, H.,Yang, C.,Xiong, Q.,Song, Q.X.,Lu, X.,Chen, H.W., et al. (2013). Identification of rice ethylene-response mutants and characterization of MHZ7/OsEIN2 in distinct ethylene response and yield trait regulation. Mol. Plant 6:1830–1848.

[19]

Magome, H.,Nomura, T.,Hanada, A.,Takeda-Kamiya, N.,Ohnishi, T.,Shinma, Y.,Katsumata, T.,Kawaide, H.,Kamiya, Y., and Yamaguchi, S. (2013). CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proc. Natl. Acad. Sci. U. S. A. 110:1947–1952.

[20]

Mo, W.P.,Tang, W.J.,Du, Y.X.,Jing, Y.J.,Bu, Q.Y., and Lin, R.C. (2020). PHYTOCHROME-INTERACTING FACTOR-LIKE14 and SLENDER RICE1 interaction controls seedling growth under salt stress. Plant Physiol. 184:506–517.

[21]

Monna, L.,Kitazawa, N.,Yoshino, R.,Suzuki, J.,Masuda, H.,Maehara, Y.,Tanji, M.,Sato, M.,Nasu, S., and Minobe, Y. (2002). Positional cloning of rice semidwarfing gene, sd-1: Rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res. 9:11–17.

[22]

Pandey, B.K.,Huang, G.Q.,Bhosale, R.,Hartman, S.,Sturrock, C.J.,Jose, L.,Martin, O.C.,Karady, M.,Voesenek, L.A.C.J.,Ljung, K., et al. (2021). Plant roots sense soil compaction through restricted ethylene diffusion. Science 371:276–27.

[23]

Qiao, J.,Quan, R.,Wang, J.,Li, Y.,Xiao, D.,Zhao, Z.,Huang, R., and Qin, H. (2023). OsEIL1 and OsEIL2, two master regulators of rice ethylene signaling, promote the expression of ROS scavenging genes to facilitate coleoptile elongation and seedling emergence from soil. Plant Commun. 5:100771.

[24]

Sagare, D.B.,Abbai, R.,Jain, A.,Jayadevappa, P.K.,Dixit, S.,Singh, A.K.,Challa, V.,Alam, S.,Singh, U.M.,Yadav, S., et al. (2020). More and more of less and less: Is genomics-based breeding of dry direct-seeded rice (DDSR) varieties the need of hour? Plant Biotechnol. J. 18:2173–2186.

[25]

Sandhu, N.,Subedi, S.R.,Singh, V.K.,Sinha, P.,Kumar, S.,Singh, S.P.,Ghimire, S.K.,Pandey, M.,Yadaw, R.B.,Varshney, R.K., et al. (2019). Deciphering the genetic basis of root morphology, nutrient uptake, yield, and yield-related traits in rice under dry direct-seeded cultivation systems. Sci. Rep. 9:9334.

[26]

Sasaki, A.,Ashikari, M.,Ueguchi-Tanaka, M.,Itoh, H.,Nishimura, A.,Swapan, D.,Ishiyama, K.,Saito, T.,Kobayashi, M.,Khush, G.S., et al. (2002). Green revolution: A mutant gibberellin-synthesis gene in rice -New insight into the rice variant that helped to avert famine over thirty years ago. Nature 416:701–702.

[27]

Sha, H.J.,Liu, H.L.,Zhao, G.X.,Han, Z.M.,Chang, H.L.,Wang, J.G.,Zheng, H.L.,Zhang, J.F.,Yu, Y.,Liu, Y.Q., et al. (2022). Elite alleles in rice and their breeding applications in northeast China. Crop J. 10:224–233.

[28]

Shao, G.N.,Lu, Z.F.,Xiong, J.S.,Wang, B.,Jing, Y.H.,Meng, X.B.,Liu, G.F.,Ma, H.Y.,Liang, Y.,Chen, F., et al. (2019). Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating expression in rice. Mol. Plant 12:1090–1102.

[29]

Shi, H.,Shen, X.,Liu, R.L.,Xue, C.,Wei, N.,Deng, X.W., and Zhong, S.W. (2016a). The red light receptor phytochrome B directly enhances substrate-E3 ligase interactions to attenuate ethylene responses. Dev. Cell 39:597–610.

[30]

Shi, H.,Liu, R.L.,Xue, C.,Shen, X.,Wei, N.,Deng, X.W., and Zhong, S.W. (2016b). Seedlings transduce the depth and mechanical pressure of covering soil using COP1 and ethylene to regulate EBF1/EBF2 for soil emergence. Curr. Biol. 26:139–149.

[31]

Spielmeyer, W.,Ellis, M.H., and Chandler, P.M. (2002). Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc. Natl. Acad. Sci. U. S. A. 99:9043–9048.

[32]

Sun, S.,Wang, T.,Wang, L.,Li, X.,Jia, Y.,Liu, C.,Huang, X.,Xie, W., and Wang, X. (2018). Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling. Nat. Commun. 9:2523.

[33]

Sun, T.P. (2011). The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr. Biol. 21: R338–R345.

[34]

Todaka, D.,Nakashima, K.,Maruyama, K.,Kidokoro, S.,Osakabe, Y.,Ito, Y.,Matsukura, S.,Fujita, Y.,Yoshiwara, K.,Ohme-Takagi, M., et al. (2012). Rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of internode elongation and induces a morphological response to drought stress. P. Natl. Acad. Sci. U. S. A. 109:15947–15952.

[35]

Waadt, R.,Schmidt, L.K.,Lohse, M.,Hashimoto, K.,Bock, R., and Kudla, J. (2008). Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes. Plant J. 56:505–516.

[36]

Wang, D.Y.,Ye, C.,Xu, C.M.,Wang, Z.M.,Chen, S.,Chu, G., and Zhang, X.F. (2019). Soil nitrogen distribution and plant nitrogen utilization in direct-seeded rice in response to deep placement of basal fertilizer-nitrogen. Rice Sci. 26:404–415.

[37]

Wang, W.S.,Mauleon, R.,Hu, Z.Q.,Chebotarov, D.,Tai, S.S.,Wu, Z.C.,Li, M.,Zheng, T.Q.,Fuentes, R.R.,Zhang, F., et al. (2018). Genomic variation in 3, 010 diverse accessions of Asian cultivated rice. Nature 557:43–44.

[38]

Wang, Y.,Wang, Y.T.,Yang, R.F.,Wang, F.H.,Fu, J.,Yang, W.B.,Bai, T.,Wang, S.X., and Yin, H.Q. (2021a). Effects of gibberellin priming on seedling emergence and transcripts involved in mesocotyl elongation in rice under deep direct-seeding conditions. J. Zhejiang Univ. Sci. B 22:1002–1021.

[39]

Wang, Y.M.,Liu, J.D.,Meng, Y.,Liu, H.Y.,Liu, C., and Ye, G.Y. (2021b). Rapid identification of QTL for mesocotyl length in rice through combining QTL-seq and genome-wide association analysis. Front. Genet. 12:713446.

[40]

Wu, K.,Wang, S.S.,Song, W.Z.,Zhang, J.Q.,Wang, Y.,Liu, Q.,Yu, J.P.,Ye, Y.F.,Li, S.,Chen, J.F., et al. (2020). Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 367:641–664.

[41]

Xiong, Q.,Ma, B.,Lu, X.,Huang, Y.H.,He, S.J.,Yang, C.,Yin, C.C.,Zhao, H.,Zhou, Y.,Zhang, W.K., et al. (2017). Ethylene-inhibited jasmonic acid biosynthesis promotes mesocotyl/coleoptile elongation of etiolated rice seedlings. Plant Cell 29:1053–1072.

[42]

Yang, C.,Lu, X.,Ma, B.,Chen, S.Y., and Zhang, J.S. (2015). Ethylene signaling in rice and Arabidopsis: Conserved and diverged aspects. Mol. Plant 8:495–505.

[43]

Ye, H.,Feng, J.H.,Zhang, L.H.,Zhang, J.F.,Mispan, M.S.,Cao, Z.Q.,Beighley, D.H.,Yang, J.C., and Gu, X.Y. (2015). Map-based cloning of seed dormancy1-2 identified a gibberellin synthesis gene regulating the development of endosperm-imposed dormancy in rice. Plant Physiol. 169:2152–2165.

[44]

Yin, C.C.,Huang, Y.H.,Zhang, X.,Zhou, Y.,Chen, S.Y., and Zhang, J.S. (2023). Ethylene-mediated regulation of coleoptile elongation in rice seedlings. Plant Cell Environ. 46:1060–1074.

[45]

Zhan, J.H.,Lu, X.,Liu, H.Y.,Zhao, Q.Z., and Ye, G.Y. (2020). Mesocotyl elongation, an essential trait for dry-seeded rice (Oryza sativa L.): A review of physiological and genetic basis. Planta 251:27.

[46]

Zhang, Y.,Su, J.B.,Duan, S.,Ao, Y.,Dai, J.R.,Liu, J.,Wang, P.,Li, Y.G.,Liu, B.,Feng, D.R., et al. (2011). A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30.

[47]

Zhao, Q.,Feng, Q.,Lu, H.Y.,Li, Y.,Wang, A.,Tian, Q.L.,Zhan, Q.L.,Lu, Y.Q.,Huang, T.,Wang, Y.C., et al. (2018). Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat. Genet. 50:279–27.

[48]

Zheng, J.S.,Hong, K.,Zeng, L.J.,Wang, L.,Kang, S.J.,Qu, M.H.,Dai, J.R.,Zou, L.Y.,Zhu, L.X.,Tang, Z.P., et al. (2020). Karrikin signaling acts parallel to and additively with strigolactone signaling to regulate rice mesocotyl elongation in darkness. Plant Cell 32:2780–2805.

[49]

Zhong, S.W.,Shi, H.,Xue, C.,Wei, N.,Guo, H.W., and Deng, X.W. (2014). Ethylene-orchestrated circuitry coordinates a seedling’s response to soil cover and etiolated growth. Proc. Natl. Acad. Sci. U. S. A. 111:3913–3920.

[50]

Zhou, W.,Guo, Z.,Chen, J.,Jiang, J.,Hui, D.F.,Wang, X.,Sheng, J.,Chen, L.G.,Luo, Y.Q.,Zheng, J.C., et al. (2019). Direct seeding for rice production increased soil erosion and phosphorus runoff losses in subtropical China. Sci. Total Environ. 695:133845.

[51]

Zong, W.,Tang, N.,Yang, J.,Peng, L.,Ma, S.Q.,Xu, Y.,Li, G.L., and Xiong, L.Z. (2016). Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes. Plant Physiol. 171:2810–2825.

RIGHTS & PERMISSIONS

2024 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/