Population genomics highlights structural variations in local adaptation to saline coastal environments in woolly grape

Tianhao Zhang , Wenjing Peng , Hua Xiao , Shuo Cao , Zhuyifu Chen , Xiangnian Su , Yuanyuan Luo , Zhongjie Liu , Yanling Peng , Xiping Yang , Guo-Feng Jiang , Xiaodong Xu , Zhiyao Ma , Yongfeng Zhou

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (7) : 1408 -1426.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (7) : 1408 -1426. DOI: 10.1111/jipb.13653
Research Article

Population genomics highlights structural variations in local adaptation to saline coastal environments in woolly grape

Author information +
History +
PDF

Abstract

Structural variations (SVs) are a feature of plant genomes that has been largely unexplored despite their significant impact on plant phenotypic traits and local adaptation to abiotic and biotic stress. In this study, we employed woolly grape (Vitis retordii), a species native to the tropical and subtropical regions of East Asia with both coastal and inland habitats, as a valuable model for examining the impact of SVs on local adaptation. We assembled a haplotype-resolved chromosomal reference genome for woolly grape, and conducted population genetic analyses based on whole-genome sequencing (WGS) data from coastal and inland populations. The demographic analyses revealed recent bottlenecks in all populations and asymmetric gene flow from the inland to the coastal population. In total, 1, 035 genes associated with plant adaptive regulation for salt stress, radiation, and environmental adaptation were detected underlying local selection by SVs and SNPs in the coastal population, of which 37.29% and 65.26% were detected by SVs and SNPs, respectively. Candidate genes such as FSD2,RGA1, and AAP8 associated with salt tolerance were found to be highly differentiated and selected during the process of local adaptation to coastal habitats in SV regions. Our study highlights the importance of SVs in local adaptation; candidate genes related to salt stress and climatic adaptation to tropical and subtropical environments are important genomic resources for future breeding programs of grapevine and its rootstocks.

Keywords

climate change / grape breeding / local adaptation with gene flow / salt tolerance / viticulture / Vitis

Cite this article

Download citation ▾
Tianhao Zhang, Wenjing Peng, Hua Xiao, Shuo Cao, Zhuyifu Chen, Xiangnian Su, Yuanyuan Luo, Zhongjie Liu, Yanling Peng, Xiping Yang, Guo-Feng Jiang, Xiaodong Xu, Zhiyao Ma, Yongfeng Zhou. Population genomics highlights structural variations in local adaptation to saline coastal environments in woolly grape. Journal of Integrative Plant Biology, 2024, 66(7): 1408-1426 DOI:10.1111/jipb.13653

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alexander, D.H.,Novembre, J., and Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19:1655–1664.

[2]

Alkan, C.,Coe, B.P., and Eichler, E.E. (2011). Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12:363–376.

[3]

Alonge, M.,Lebeigle, L.,Kirsche, M.,Jenike, K.,Ou, S.,Aganezov, S.,Wang, X.,Lippman, Z.B.,Schatz, M.C., and Soyk, S. (2022). Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biol. 23:258.

[4]

Alonge, M.,Wang, X.,Benoit, M.,Soyk, S.,Pereira, L.,Zhang, L.,Suresh, H.,Ramakrishnan, S.,Maumus, F., and Ciren, D. (2020). Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182:145–161.e23

[5]

Bân, N.T. (2003). Danh lục các loài thục vật Việt Nam. Tập. 1:3.

[6]

Benson, G. (1999). Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 27:573–580.

[7]

Branties N. (1978). Pollinator attraction of Vitis vinifera subsp. silvestris.

[8]

Cantalapiedra, C.P.,Hernandez-Plaza, A.,Letunic, I.,Bork, P., and Huerta-Cepas, J. (2021). EggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38:5825–5829.

[9]

Carrasco, D.,Zhou-Tsang, A.,Rodriguez-Izquierdo, A.,Ocete, R.,Revilla, M.A., and Arroyo-García, R. (2022). Coastal wild grapevine accession (Vitis vinifera L. ssp. sylvestris) shows distinct late and early transcriptome changes under salt stress in comparison to commercial rootstock richter 110. Plants 11:2688.

[10]

Chang, C.C.,Chow, C.C.,Tellier, L.,Vattikuti, S.,Purcell, S.M., and Lee, J.J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 4:16.

[11]

Chen, I., and Manchester, S.R. (2007). Seed morphology of modern and fossil Ampelocissus (Vitaceae) and implications for phytogeography. Am. J. Bot. 94:1534–1553.

[12]

Chen, J.,Wang, Z.,Tan, K.,Huang, W.,Shi, J.,Li, T.,Hu, J.,Wang, K.,Wang, C.,Xin, B., et al. (2023). A complete telomere-to-telomere assembly of the maize genome. Nat. Genet. 55:1221–1231.

[13]

Chen, S.,Zhou, Y.,Chen, Y., and Gu, J. (2018). Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: i884–i890.

[14]

Chen, Z.,Ren, H.,Wen, J., and Wu, C. (2007). Vitaceae. Flora China 12:173–222.

[15]

Chin, C.S.,Peluso, P.,Sedlazeck, F.J.,Nattestad, M.,Concepcion, G.T.,Clum, A.,Dunn, C.,O’Malley, R.,Figueroa-Balderas, R.,Morales-Cruz, A., et al. (2016). Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13:1050–1054.

[16]

Choat, B.,Jansen, S.,Brodribb, T.J.,Cochard, H.,Delzon, S.,Bhaskar, R.,Bucci, S.J.,Feild, T.S.,Gleason, S.M., and Hacke, U.G. (2012). Global convergence in the vulnerability of forests to drought. Nature 491:752–755.

[17]

Collins, R.L.,Brand, H.,Karczewski, K.J.,Zhao, X.,Alföldi, J.,Francioli, L.C.,Khera, A.V.,Lowther, C.,Gauthier, L.D., and Wang, H. (2020). A structural variation reference for medical and population genetics. Nature 581:444–451.

[18]

Danecek, P.,Auton, A.,Abecasis, G.,Albers, C.A.,Banks, E.,DePristo, M.A.,Handsaker, R.E.,Lunter, G.,Marth, G.T.,Sherry, S.T., et al. (2011). The variant call format and VCFtools. Bioinformatics 27:2156–2158.

[19]

Dudchenko, O.,Batra, S.S.,Omer, A.D.,Nyquist, S.K.,Hoeger, M.,Durand, N.C.,Shamim, M.S.,Machol, I.,Lander, E.S.,Aiden, A.P., et al. (2017). De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356:92–95.

[20]

Durand, N.C.,Robinson, J.T.,Shamim, M.S.,Machol, I.,Mesirov, J.P.,Lander, E.S., and Aiden, E.L. (2016a). Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3:99–101.

[21]

Durand, N.C.,Shamim, M.S.,Machol, I.,Rao, S.S.P.,Huntley, M.H.,Lander, E.S., and Aiden, E.L. (2016b). Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3:95–98.

[22]

Edelman, N.B.,Frandsen, P.B.,Miyagi, M.,Clavijo, B.,Davey, J.,Dikow, R.B.,García-Accinelli, G.,Van Belleghem, S.M.,Patterson, N.,Neafsey, D.E., et al. (2019). Genomic architecture and introgression shape a butterfly radiation. Science 366:594–599.

[23]

Excofffier, L.,Marchi, N.,Marques, D.A.,Matthey-Doret, R.,Gouy, A., and Sousa, V.C. (2021). Fastsimcoal2: Demographic inference under complex evolutionary scenarios. Bioinformatics 37:4882–4885.

[24]

Fang, Z.,Pyhäjärvi, T.,Weber, A.L.,Dawe, R.K.,Glaubitz, J.C.,González, J.d.J.S.,Ross-Ibarra, C.,Doebley, J.,Morrell, P.L., and Ross-Ibarra, J. (2012). Megabase-scale inversion polymorphism in the wild ancestor of maize. Genetics 191:883–894.

[25]

Fitak, R.R. (2021). OptM: Estimating the optimal number of migration edges on population trees using Treemix. Biol. Meth. Protoc. 6:6.

[26]

Garcia-Molina, A.,Altmann, M.,Alkofer, A.,Epple, P.M.,Dangl, J.L., and Falter-Braun, P. (2017). LSU network hubs integrate abiotic and biotic stress responses via interaction with the superoxide dismutase FSD2. J. Exp. Bot. 68:1185–1197.

[27]

Gaut, B.S.,Seymour, D.K.,Liu, Q., and Zhou, Y. (2018). Demography and its effects on genomic variation in crop domestication. Nat. Plants 4:512–520.

[28]

Goel, M., and Schneeberger, K. (2022). Plotsr: Visualizing structural similarities and rearrangements between multiple genomes. Bioinformatics 38:2922–2926.

[29]

Goel, M.,Sun, H.Q.,Jiao, W.B., and Schneeberger, K. (2019). SyRI: Finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 20:13.

[30]

Gu, Z.,Pan, S.,Lin, Z.,Hu, L.,Dai, X.,Chang, J.,Xue, Y.,Su, H.,Long, J., and Sun, M. (2021). Climate-driven flyway changes and memory-based long-distance migration. Nature 591:259–264.

[31]

Gurevich, A.,Saveliev, V.,Vyahhi, N., and Tesler, G. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075.

[32]

Haas, B.J.,Delcher, A.L.,Mount, S.M.,Wortman, J.R.,Smith, Jr, R.K.,Hannick, L.I.,Maiti, R.,Ronning, C.M.,Rusch, D.B., and Town, C.D. (2003). Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31:5654–5666.

[33]

Haas, B.J.,Papanicolaou, A.,Yassour, M.,Grabherr, M.,Blood, P.D.,Bowden, J.,Couger, M.B.,Eccles, D.,Li, B., and Lieber, M. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8:1494–1512.

[34]

Hager, E.R.,Harringmeyer, O.S.,Wooldridge, T.B.,Theingi, S.,Gable, J.T.,McFadden, S.,Neugeboren, B.,Turner, K.M.,Jensen, J.D., and Hoekstra, H.E. (2022). A chromosomal inversion contributes to divergence in multiple traits between deer mouse ecotypes. Science 377:399–405.

[35]

Hall, M.,Lowry, D., and Willis, J. (2010). Is local adaptation in Mimulus guttatus caused by trade-offs at individual loci? Mol. Ecol. 19:2739–2753.

[36]

Hamala, T., and Savolainen, O. (2019). Genomic patterns of local adaptation under gene flow in Arabidopsis lyrata. Mol. Biol. Evol. 36:2557–2571.

[37]

Hämälä T.,Wafula, E.K.,Guiltinan, M.J.,Ralph, P.E.,dePamphilis, C.W., and Tiffin, P. (2021). Genomic structural variants constrain and facilitate adaptation in natural populations of Theobroma cacao, the chocolate tree. Proc. Natl. Acad. Sci. U.S.A. 118: e2102914118.

[38]

He, Z.,Feng, X.,Chen, Q.,Li, L.,Li, S.,Han, K.,Guo, Z.,Wang, J.,Liu, M., and Shi, C. (2022). Evolution of coastal forests based on a full set of mangrove genomes. Nat. Ecol. Evol. 6:738–749.

[39]

Holt, C., and Yandell, M. (2011). MAKER2: An annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinf. 12:1–14.

[40]

Huang, K.,Ostevik, K.L.,Elphinstone, C.,Todesco, M.,Bercovich, N.,Owens, G.L., and Rieseberg, L.H. (2022). Mutation load in sunflower inversions is negatively correlated with inversion heterozygosity. Mol. Biol. Evol. 39: msac101.

[41]

Hudson, R.R. (2002). Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18:337–338.

[42]

Huerta-Cepas, J.,Szklarczyk, D.,Heller, D.,Hernandez-Plaza, A.,Forslund, S.K.,Cook, H.,Mende, D.R.,Letunic, I.,Rattei, T.,Jensen, L.J., et al. (2019). EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47: D309–D314.

[43]

Huerta-Sánchez, E.,Jin, X.,Asan, Bianba, Z.,Peter, B.M.,Vinckenbosch, N.,Liang, Y.,Yi, X.,He, M.,Somel, M., et al. (2014). Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512:194–197.

[44]

Jiang, T.,Liu, Y.Z.,Jiang, Y.,Li, J.Y.,Gao, Y.,Cui, Z.,Liu, Y.D.,Liu, B., and Wang, Y.D. (2020). Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 21:189.

[45]

Kawecki, T.J., and Ebert, D. (2004). Conceptual issues in local adaptation. Ecol. Lett. 7:1225–1241.

[46]

Kern, A.D., and Hahn, M.W. (2018). The neutral theory in light of natural selection. Mol. Biol. Evol. 35:1366–1371.

[47]

Kim, D.,Paggi, J.M.,Park, C.,Bennett, C., and Salzberg, S.L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37:907–915.

[48]

Kimura, M. (1968). Evolutionary rate at the molecular level. Nature 217:624–626.

[49]

Korf, I. (2004). Gene finding in novel genomes. BMC Bioinf. 5:1–9.

[50]

Kou, Y.,Liao, Y.,Toivainen, T.,Lv, Y.,Tian, X.,Emerson, J.,Gaut, B.S., and Zhou, Y. (2020). Evolutionary genomics of structural variation in Asian rice (Oryza sativa) domestication. Mol. Biol. Evol. 37:3507–3524.

[51]

Krupovic, M., and Koonin, E.V. (2015). Polintons: A hotbed of eukaryotic virus, transposon and plasmid evolution. Nat. Rev. Microbiol. 13:105–115.

[52]

Kumar, S.,Stecher, G., and Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870–1874.

[53]

Kurtz, S.,Phillippy, A.,Delcher, A.L.,Smoot, M.,Shumway, M.,Antonescu, C., and Salzberg, S.L. (2004). Versatile and open software for comparing large genomes. Genome Biol. 5:9.

[54]

Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993.

[55]

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760.

[56]

Li, H.,Handsaker, B.,Wysoker, A.,Fennell, T.,Ruan, J.,Homer, N.,Marth, G.,Abecasis, G.,Durbin, R., and Genome Project Data, P. (2009). The sequence alignment/Map format and SAMtools. Bioinformatics 25:2078–2079.

[57]

Liang, Z.C.,Duan, S.C.,Sheng, J.,Zhu, S.S.,Ni, X.M.,Shao, J.H.,Liu, C.H.,Nick, P.,Du, F.,Fan, P.G., et al. (2019). Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses. Nat. Commun. 10:12.

[58]

Liu, S.Y.,Zhang, L.,Sang, Y.P.,Lai, Q.,Zhang, X.X.,Jia, C.F.,Long, Z.Q.,Wu, J.L.,Ma, T.,Mao, K.S., et al. (2022). Demographic history and natural selection shape patterns of deleterious mutation load and barriers to introgression across populus genome. Mol. Biol. Evol. 39:16.

[59]

Lowry, D.B., and Willis, J.H. (2010). A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol. 8: e1000500.

[60]

Ma, Z.Y.,Nie, Z.L.,Liu, X.Q.,Tian, J.P.,Zhou, Y.F.,Zimmer, E., and Wen, J. (2022). Phylogenetic relationships, hybridization events, and drivers of diversification of East Asian wild grapes as revealed by phylogenomic analyses. J. Syst. Evol. 61:273–283

[61]

Ma, Z.Y.,Wen, J.,Ickert-Bond, S.M.,Nie, Z.L.,Chen, L.Q., and Liu, X.Q. (2018). Phylogenomics, biogeography, and adaptive radiation of grapes. Mol. Phylogenet. Evol. 129:258–267.

[62]

Malhi, Y., and Wright, J. (2004). Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos. T. R. Soc. B. 359:311–329.

[63]

Malinsky, M.,Matschiner, M., and Svardal, H. (2021). Dsuite -Fast D-statistics and related admixture evidence from VCF files. Mol. Ecol. Resour. 21:584–595.

[64]

Manni, M.,Berkeley, M.R.,Seppey, M.,Simao, F.A., and Zdobnov, E.M. (2021). BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38:4647–4654.

[65]

Marcais, G., and Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27:764–770.

[66]

Mills, R.E.,Walter, K.,Stewart, C.,Handsaker, R.E.,Chen, K.,Alkan, C.,Abyzov, A.,Yoon, S.C.,Ye, K., and Cheetham, R.K. (2011). Mapping copy number variation by population-scale genome sequencing. Nature 470:59–65.

[67]

Minh, B.Q.,Schmidt, H.A.,Chernomor, O.,Schrempf, D.,Woodhams, M.D.,von Haeseler, A., and Lanfear, R. (2020). IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37:1530–1534.

[68]

Mitchell-Olds, T.,Willis, J.H., and Goldstein, D.B. (2007). Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat. Rev. Genet. 8:845–856.

[69]

Moore, M., and Wen, J.,Committee, F. o. N. A. E. (2016). Vitaceae. FNANM. 12:3–13.

[70]

Newman, M.,Ketphanh, S.,Svengsuksa, B.,Thomas, P.,Sengdala, K.,Lamxay, V., and Armstrong, K. (2007). A checklist of the vascular plants of Lao PDR: Royal Botanic Garden Edinburgh.

[71]

Ou, S.,Chen, J., and Jiang, N. (2018). Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Res. 46: e126.

[72]

Ou, S.J.,Su, W.J.,Liao, Y.,Chougule, K.,Agda, J.R.A.,Hellinga, A.J.,Lugo, C.S.B.,Elliott, T.A.,Ware, D.,Peterson, T., et al. (2019). Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20:18.

[73]

Oziolor, E.M.,Reid, N.M.,Yair, S.,Lee, K.M.,Guberman VerPloeg, S.,Bruns, P.C.,Shaw, J.R.,Whitehead, A., and Matson, C.W. (2019). Adaptive introgression enables evolutionary rescue from extreme environmental pollution. Science 364:455–457.

[74]

Pavlidis, P.,Živković D.,Stamatakis, A., and Alachiotis, N. (2013). SweeD: Likelihood-based detection of selective sweeps in thousands of genomes. Mol. Biol. Evol. 30:2224–2234.

[75]

Pertea, G., and Pertea, M. (2020). GFF utilities: GffRead and GffCompare. F1000Res. 9:304.

[76]

Pertea, M.,Pertea, G.M.,Antonescu, C.M.,Chang, T.-C.,Mendell, J.T., and Salzberg, S.L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33:290–295.

[77]

Pickrell, J.K., and Pritchard, J.K. (2012). Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8:17.

[78]

Rausch, T.,Zichner, T.,Schlattl, A.,Stutz, A.M.,Benes, V., and Korbel, J.O. (2012). DELLY: Structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28: I333–I339.

[79]

Santiago, J.P., and Tegeder, M. (2016). Connecting source with sink: The role of Arabidopsis AAP8 in phloem loading of amino acids. Plant Physiol. 171:508–521.

[80]

Savolainen, O.,Lascoux, M., and Merilä J. (2013). Ecological genomics of local adaptation. Nat. Rev. Genet. 14:807–820.

[81]

Shackelford, G.,Steward, P.R.,Benton, T.G.,Kunin, W.E.,Potts, S.G.,Biesmeijer, J.C., and Sait, S.M. (2013). Comparison of pollinators and natural enemies: A meta-analysis of landscape and local effects on abundance and richness in crops. Biol. Rev. 88:1002–1021.

[82]

Shang, L.,He, W.,Wang, T.,Yang, Y.,Xu, Q.,Zhao, X.,Yang, L.,Zhang, H.,Li, X.,Lv, Y., et al. (2023). A complete assembly of the rice Nipponbare reference genome. Mol. Plant 16:1232–1236.

[83]

Shang, L.G.,Li, X.X.,He, H.Y.,Yuan, Q.L.,Song, Y.N.,Wei, Z.R.,Lin, H.,Hu, M.,Zhao, F.L.,Zhang, C., et al. (2022). A super pan-genomic landscape of rice. Cell Res. 32:878–896.

[84]

Shi, X.,Cao, S.,Wang, X.,Huang, S.,Wang, Y.,Liu, Z.,Liu, W.,Leng, X.,Peng, Y.,Wang, N., et al. (2023). The complete reference genome for grapevine (Vitis vinifera L.) genetics and breeding. Hortic. Res. 10: uhad061.

[85]

Silverstone, A.L.,Ciampaglio, C.N., and Sun, T.-p (1998). The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10:155–169.

[86]

Stanke, M.,Keller, O.,Gunduz, I.,Hayes, A.,Waack, S., and Morgenstern, B. (2006). AUGUSTUS: Ab initio prediction of alternative transcripts. Nucleic Acids Res. 34: W435–W439.

[87]

Stephan, W. (2010). Genetic hitchhiking versus background selection: The controversy and its implications. Philos. T. R. Soc. B. 365:1245–1253.

[88]

Sudmant, P.H.,Rausch, T.,Gardner, E.J.,Handsaker, R.E.,Abyzov, A.,Huddleston, J.,Zhang, Y.,Ye, K.,Jun, G., and Hsi-Yang Fritz, M. (2015). An integrated map of structural variation in 2, 504 human genomes. Nature 526:75–81.

[89]

Suzuki, T.,Iizuka, Y.,Matsuoka, K.,Furukawa, T.,Kamiyama, K., and Watanabe, O. (2002). Distribution of sea salt components in snow cover along the traverse route from the coast to Dome Fuji station 1000 km inland at east Dronning Maud Land. Antarctica. Tellus. B. 54:407–411.

[90]

Takou, M.,Hämälä T.,Koch, E.M.,Steige, K.A.,Dittberner, H.,Yant, L.,Genete, M.,Sunyaev, S.,Castric, V.,Vekemans, X., et al. (2021). Maintenance of adaptive dynamics and no detectable load in a range-edge outcrossing plant population. Mol. Biol. Evol. 38:1820–1836.

[91]

Tarailo-Graovac, M., and Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics 4:1–4.

[92]

Terhorst, J.,Kamm, J.A., and Song, Y.S. (2017). Robust and scalable inference of population history froth hundreds of unphased whole genomes. Nat. Genet. 49:303–309.

[93]

Todesco, M.,Owens, G.L.,Bercovich, N.,Légaré J.-S.,Soudi, S.,Burge, D.O.,Huang, K.,Ostevik, K.L.,Drummond, E.B., and Imerovski, I. (2020). Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature 584:602–607.

[94]

Vaser, R.,Adusumalli, S.,Leng, S.N.,Sikic, M., and Ng, P.C. (2016). SIFT missense predictions for genomes. Nat. Protoc. 11:1–9.

[95]

Vurture, G.W.,Sedlazeck, F.J.,Nattestad, M.,Underwood, C.J.,Fang, H.,Gurtowski, J., and Schatz, M.C. (2017). GenomeScope: Fast reference-free genome profiling from short reads. Bioinformatics 33:2202–2204.

[96]

Wang, Z.,Xue, J.-Y.,Hu, S.-Y.,Zhang, F.,Yu, R.,Chen, D.,Van de Peer, Y.,Jiang, J.,Song, A., and Ni, L. (2022). The genome of hibiscus hamabo reveals its adaptation to saline and waterlogged habitat. Hortic. Res. 9: uhac067.

[97]

Wen-Tsai, W. (1979). Vitacearum novitates. J. Syst. Evol. 17:73–96.

[98]

Wu, T.Z.,Hu, E.Q.,Xu, S.B.,Chen, M.J.,Guo, P.F.,Dai, Z.H.,Feng, T.Z.,Zhou, L.,Tang, W.L.,Zhan, L., et al. (2021). ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2:100141.

[99]

Xiao, H.,Liu, Z.,Wang, N.,Long, Q.,Cao, S.,Huang, G.,Liu, W.,Peng, Y.,Riaz, S.,Walker, A.M., et al. (2023). Adaptive and maladaptive introgression in grapevine domestication. Proc. Natl. Acad. Sci. U.S.A. 120: e2222041120.

[100]

Yi, X.,Liang, Y.,Huerta-Sanchez, E.,Jin, X.,Cuo, Z.X.P.,Pool, J.E.,Xu, X.,Jiang, H.,Vinckenbosch, N.,Korneliussen, T.S., et al. (2010). Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329:75–78.

[101]

Zhang, C.,Dong, S.S.,Xu, J.Y.,He, W.M., and Yang, T.L. (2019). PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35:1786–1788.

[102]

Zhang, Y.,Peng, Y.,Liu, J.,Yan, J.,Zhu, K.,Sun, X.,Bu, X.,Wang, X.,Ahammed, G.J., and Liu, Y. (2023). Tetratricopeptide repeat protein SlREC2 positively regulates cold tolerance in tomato. Plant Physiol. 192: kiad085.

[103]

Zhou, Y.,Massonnet, M.,Sanjak, J.S.,Cantu, D., and Gaut, B.S. (2017). Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. Proc. Natl. Acad. Sci. U.S.A. 114:11715–11720.

[104]

Zhou, Y.,Minio, A.,Massonnet, M.,Solares, E.,Lv, Y.,Beridze, T.,Cantu, D., and Gaut, B.S. (2019a). The population genetics of structural variants in grapevine domestication. Nat. Plants 5:965–979.

[105]

Zhou, Y.,Muyle, A., and Gaut, B.S. (2019b). Evolutionary genomics and the domestication of grapes. The Grape Genome,Dario Cantu and M. Andrew Walker (Eds). 3:39–55.

[106]

Zhou, Y.,Zhang, Z.,Bao, Z.,Li, H.,Lyu, Y.,Zan, Y.,Wu, Y.,Cheng, L.,Fang, Y.,Wu, K., et al. (2022). Graph pangenome captures missing heritability and empowers tomato breeding. Nature 606:527–534.

[107]

Zhou, Y.F., and Gaut, B.S. (2020). Large chromosomal variants drive adaptation in sunflowers. Nat. Plants 6:734–735.

RIGHTS & PERMISSIONS

2024 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/