Structural insights into the unusual core photocomplex from a triply extremophilic purple bacterium,Halorhodospira halochloris

ChenHui Qi , GuangLei Wang , FangFang Wang , Jie Wang , XiangPing Wang , MeiJuan Zou , Fei Ma , Michael T. Madigan , Yukihiro Kimura , ZhengYu WangOtomo , LongJiang Yu

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (10) : 2262 -2272.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (10) : 2262 -2272. DOI: 10.1111/jipb.13628
Research Article

Structural insights into the unusual core photocomplex from a triply extremophilic purple bacterium,Halorhodospira halochloris

Author information +
History +
PDF

Abstract

Halorhodospira (Hlr.) halochloris is a triply extremophilic phototrophic purple sulfur bacterium, as it is thermophilic, alkaliphilic, and extremely halophilic. The light-harvesting-reaction center (LH1–RC) core complex of this bacterium displays an LH1-Qy transition at 1, 016 nm, which is the lowest-energy wavelength absorption among all known phototrophs. Here we report the cryo-EM structure of the LH1–RC at 2.42 Å resolution. The LH1 complex forms a tricyclic ring structure composed of 16 αβγ-polypeptides and one αβ-heterodimer around the RC. From the cryo-EM density map, two previously unrecognized integral membrane proteins, referred to as protein G and protein Q, were identified. Both of these proteins are single transmembrane-spanning helices located between the LH1 ring and the RC L-subunit and are absent from the LH1–RC complexes of all other purple bacteria of which the structures have been determined so far. Besides bacteriochlorophyll b molecules (B1020) located on the periplasmic side of the Hlr. halochloris membrane, there are also two arrays of bacteriochlorophyll b molecules (B800 and B820) located on the cytoplasmic side. Only a single copy of a carotenoid (lycopene) was resolved in the Hlr. halochloris LH1–α3β3 and this was positioned within the complex. The potential quinone channel should be the space between the LH1–α3β3 that accommodates the single lycopene but does not contain a γ-polypeptide, B800 and B820. Our results provide a structural explanation for the unusual Qy red shift and carotenoid absorption in the Hlr. halochloris spectrum and reveal new insights into photosynthetic mechanisms employed by a species that thrives under the harshest conditions of any phototrophic microorganism known.

Keywords

cryo-EM / LH1–RC / single carotenoid / three bacteriochlorophyll b molecules / triply extremophilic purple bacterium / unusual Q y red shift

Cite this article

Download citation ▾
ChenHui Qi, GuangLei Wang, FangFang Wang, Jie Wang, XiangPing Wang, MeiJuan Zou, Fei Ma, Michael T. Madigan, Yukihiro Kimura, ZhengYu WangOtomo, LongJiang Yu. Structural insights into the unusual core photocomplex from a triply extremophilic purple bacterium,Halorhodospira halochloris. Journal of Integrative Plant Biology, 2024, 66(10): 2262-2272 DOI:10.1111/jipb.13628

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams, P.D.,Afonine, P.V.,Bunkoczi, G.,Chen, V.B.,Echols, N.,Headd, J.J.,Hung, L.W.,Jain, S.,Kapral, G.J.,Grosse Kunstleve, R.W., et al. (2011). The Phenix software for automated determination of macromolecular structures. Methods 55: 94-106.

[2]

Blankenship, R.E. (2021). Molecular Mechanisms of Photosynthesis. 3rd eds. John Wiley & Sons, Chichester.

[3]

Canniffe, D.P., and Hunter, C.N. (2014). Engineered biosynthesis of bacteriochlorophyll b in Rhodobacter sphaeroides. Biochim. Biophys. Acta 1837: 1611-1616.

[4]

Cao, P.,Bracun, L.,Yamagata, A.,Christianson, B.M.,Negami, T.,Zou, B.,Terada, T.,Canniffe, D.P.,Shirouzu, M., and Li, M. (2022). Structural basis for the assembly and quinone transport mechanisms of the dimeric photosynthetic RC-LH1 supercomplex. Nat. Commun. 13: 1-12.

[5]

Cogdell, R.J. (1985). Carotenoids in photosynthesis. Pure Appl. Chem. 57: 723-728.

[6]

Cogdell, R.J., and Frank, H.A. (1987). How carotenoids function in photosynthetic bacteria. Biochim. Biophys. Acta 895: 63-79.

[7]

Davis, C.M.,Parkes-Loach, P.S.,Cook, C.K.,Meadows, K.A.,Bandilla, M.,Scheer, H., and Loach, P.A. (1996). Comparison of the structural requirements for bacteriochlorophyll binding in the core light-harvesting complexes of Rhodospirillum rubrum and Rhodobacter sphaeroides using reconstitution methodology with bacteriochlorophyll analogs. Biochemistry 35: 3072-3084.

[8]

DeLano, W. (2004). The Pymol Molecular Graphics System version 1.0. Delano Scientific LLC,Palo Alto, CA.

[9]

Emsley, P.,Lohkamp, B.,Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66: 486-501.

[10]

Gardiner, A.T.,Naydenova, K.,Castro-Hartmann, P.,Nguyen-Phan, T.C.,Russo, C.J.,Sader, K.,Hunter, C.N.,Cogdell, R.J., and Qian, P. (2021). The 2.4 Å cryo-EM structure of a heptameric light-harvesting 2 complex reveals two carotenoid energy transfer pathways. Sci. Adv. 7: eabe4650.

[11]

Gardiner, A.T.,Nguyen-Phan, T.C., and Cogdell, R.J. (2020). A comparative look at structural variation among RC-LH1 ‘Core’ complexes present in anoxygenic phototrophic bacteria. Photosynth. Res. 145: 83-96.

[12]

Hirose, M.,Tsukatani, Y.,Harada, J., and Tamiaki, H. (2022). Characterization of regioisomeric diterpenoid tails in bacteriochlorophylls produced by geranylgeranyl reductase from Halorhodospira halochloris and Blastochloris viridis. Photosynth. Res. 154: 1-12.

[13]

Hitchcock, A.,Swainsbury, D.J.K., and Hunter, C.N. (2023). Photosynthesis in the near infrared: The γ subunit of Blastochloris viridis LH1 red-shifts absorption beyond 1, 000 nm. Biochem. J. 480: 455-460.

[14]

Imhoff, J.F., and Suling, J. (1996). The phylogenetic relationship among Ectothiorhodospiraceae: A reevaluation of their taxonomy on the basis of 16S rDNA analyses. Arch. Microbiol. 165: 106-113.

[15]

Imhoff, J.F., and Trüper, H.G. (1977). Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch. Microbiol. 114: 115-121.

[16]

Kimura, Y.,Nakata, K.,Nojima, S.,Takenaka, S.,Madigan, M.T., and Wang-Otomo, Z.-Y. (2022). Salt-and pH-dependent thermal stability of photocomplexes from extremophilic bacteriochlorophyll b-containing Halorhodospira species. Microorganisms 10: 959.

[17]

Kimura, Y.,Nojima, S.,Nakata, K.,Yamashita, T.,Wang, X.P.,Takenaka, S.,Akimoto, S.,Kobayashi, M.,Madigan, M.T.,Wang-Otomo, Z.Y., et al. (2021). Electrostatic charge controls the lowest LH1 Qy transition energy in the triply extremophilic purple phototrophic bacterium,Halorhodospira halochloris. Biochim. Biophys. Acta, Bioenerg. 1862: 148473.

[18]

Kimura, Y.,Tani, K.,Madigan, M.T., and Wang-Otomo, Z.-Y. (2023). Advances in the spectroscopic and structural characterization of core light-harvesting complexes from purple phototrophic bacteria. J. Phys. Chem. B 127: 6-17.

[19]

Koepke, J.,Hu, X.,Muenke, C.,Schulten, K., and Michel, H. (1996). The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure 4: 581-597.

[20]

Krogh, A.,Larsson, B.,von Heijne, G., and Sonnhammer, E.L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305: 567-580.

[21]

Liu, L.N.,Bracun, L., and Li, M. (2024). Structural diversity and modularity of photosynthetic RC-LH1 complexes. Trends Microbiol. 32: 38-52.

[22]

Mizoguchi, T.,Isaji, M.,Harada, J.,Watabe, K., and Tamiaki, H. (2009). Structural determination of the Δ2, 10-phytadienyl substituent in the 17-propionate of bacteriochlorophyll-b from Halorhodospira halochloris. J. Porphyrins phthalocyanines 13: 41-50.

[23]

Morosinotto, T.,Breton, J.,Bassi, R., and Croce, R. (2003). The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I. J. Biol. Chem. 278: 49223-49229.

[24]

Namoon, D.,Rudling, N.M., and Canniffe, D.P. (2022). The role of the γ subunit in the photosystem of the lowest-energy phototrophs. Biochem. J. 479: 2449-2463.

[25]

Parkes-Loach, P.S.,Michalski, T.J.,Bass, W.J.,Smith, U., and Loach, P.A. (1990). Probing the bacteriochlorophyll binding site by reconstitution of the light-harvesting complex of Rhodospirillum rubrum with bacteriochlorophyll a analogs. Biochemistry 29: 2951-2960.

[26]

Pettersen, E.F.,Goddard, T.D.,Huang, C.C.,Couch, G.S.,Greenblatt, D.M.,Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera-A visualization system for exploratory research and analysis. J. Comput. Chem. 25: 1605-1612.

[27]

Pettersen, E.F.,Goddard, T.D.,Huang, C.C.,Meng, E.C.,Couch, G.S.,Croll, T.I.,Morris, J.H., and Ferrin, T.E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30: 70-82.

[28]

Prince, S.M.,Howard, T.D.,Myles, D.A.A.,Wilkinson, C.,Papiz, M.Z.,Freer, A.A.,Cogdell, R.J., and Isaacs, N.W. (2003). Detergent structure in crystals of the integral membrane light-harvesting complex LH2 from Rhodopseudomonas acidophila strain 10050. J. Mol. Biol. 326: 307-315.

[29]

Punjani, A.,Rubinstein, J.L.,Fleet, D.J., and Brubaker, M.A. (2017). cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14: 290-296.

[30]

Punjani, A.,Zhang, H., and Fleet, D.J. (2020). Non-uniform refinement: Adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17: 1214-1221.

[31]

Qi, C.H.,Wang, G.L.,Wang, F.F.,Xin, Y.,Zou, M.J.,Madigan, M.T.,Wang-Otomo, Z.Y.,Ma, F., and Yu, L.J. (2023). New insights on the photocomplex of Roseiflexus castenholzii revealed from comparisons of native and carotenoid-depleted complexes. J. Biol. Chem. 299: 105057.

[32]

Qian, P.,Croll, T.I.,Hitchcock, A.,Jackson, P.J.,Salisbury, J.H.,Castro-Hartmann, P.,Sader, K.,Swainsbury, D.J.K., and Hunter, C.N. (2021a). Cryo-EM structure of the dimeric Rhodobacter sphaeroides RC-LH1 core complex at 2.9 Å: The structural basis for dimerisation. Biochem. J. 478: 3923-3937.

[33]

Qian, P.,Croll, T.I.,Swainsbury, D.J.K.,Castro-Hartmann, P.,Moriarty, N.W.,Sader, K., and Hunter, C.N. (2021b). Cryo-EM structure of the Rhodospirillum rubrum RC-LH1 complex at 2.5 Å: The structural basis for dimerisation. Biochem. J. 478: 3253-3263.

[34]

Qian, P.,Gardiner, A.T.,Simova, I.,Naydenova, K.,Croll, T.I.,Jackson, P.J.,Nupur, Kloz, M.,Cubakova, P.,Kuzma, M., et al. (2022). 2.4 Å structure of the double-ring Gemmatimonas phototrophica photosystem. Sci. Adv. 8: eabk3139.

[35]

Qian, P.,Siebert, C.A.,Wang, P.,Canniffe, D.P., and Hunter, C.N. (2018). Cryo-EM structure of the Blastochloris viridis LH1-RC complex at 2.9 Å. Nature 556: 203-208.

[36]

Qian, P.,Swainsbury, D.J.K.,Croll, T.I.,Castro-Hartmann, P.,Divitini, G.,Sader, K., and Hunter, C.N. (2021c). Cryo-EM structure of the Rhodobacter sphaeroides light-harvesting 2 complex at 2.1 Å. Biochemistry 60: 3302-3314.

[37]

Qian, P.,Swainsbury, D.J.K.,Croll, T.I.,Salisbury, J.H.,Martin, E.C.,Jackson, P.J.,Hitchcock, A.,Castro-Hartmann, P.,Sader, K., and Hunter, C.N. (2021d). Cryo-EM structure of the monomeric Rhodobacter sphaeroides RC-LH1 core complex at 2.5 Å. Biochem. J. 478: 3775-3790.

[38]

Saga, Y.,Yamashita, M.,Masaoka, Y.,Hidaka, T.,Imanishi, M.,Kimura, Y., and Nagasawa, Y. (2021). Excitation energy transfer from bacteriochlorophyll b in the B800 site to B850 bacteriochlorophyll a in light-harvesting complex 2. J. Phys. Chem. B 125: 2009-2017.

[39]

Swainsbury, D.J.,Faries, K.M.,Niedzwiedzki, D.M.,Martin, E.C.,Flinders, A.J.,Canniffe, D.P.,Shen, G.,Bryant, D.A.,Kirmaier, C., and Holten, D. (2019). Engineering of B800 bacteriochlorophyll binding site specificity in the Rhodobacter sphaeroides LH2 antenna. Biochim. Biophys. Acta Bioenerg. 1860: 209-223.

[40]

Swainsbury, D.J.,Qian, P.,Hitchcock, A., and Hunter, C.N. (2023). The structure and assembly of reaction centre-light-harvesting 1 complexes in photosynthetic bacteria. Biosci. Rep. 43: BSR20220089.

[41]

Tani, K.,Kanno, R.,Ji, X.-C.,Hall, M.,Yu, L.-J.,Kimura, Y.,Madigan, M.T.,Mizoguchi, A.,Humbel, B.M., and Wang-Otomo, Z.-Y. (2021a). Cryo-EM structure of the photosynthetic LH1-RC complex from Rhodospirillum rubrum. Biochemistry 60: 2483-2491.

[42]

Tani, K.,Kanno, R.,Kikuchi, R.,Kawamura, S.,Nagashima, K.V.P.,Hall, M.,Takahashi, A.,Yu, L.J.,Kimura, Y.,Madigan, M.T., et al. (2022). Asymmetric structure of the native Rhodobacter sphaeroides dimeric LH1-RC complex. Nat. Commun. 13: 1904.

[43]

Tani, K.,Nagashima, K.V.P.,Kanno, R.,Kawamura, S.,Kikuchi, R.,Hall, M.,Yu, L.-J.,Kimura, Y.,Madigan, M.T.,Mizoguchi, A., et al. (2021b). A previously unrecognized membrane protein in the Rhodobacter sphaeroides LH1-RC photocomplex. Nat. Commun. 12: 6300.

[44]

Tsukatani, Y.,Hirose, Y.,Harada, J.,Yonekawa, C., and Tamiaki, H. (2019). Unusual features in the photosynthetic machinery of Halorhodospira halochloris DSM 1059 revealed by complete genome sequencing. Photosynth. Res. 140: 311-319.

[45]

Wagner, T., and Raunser, S. (2020). The evolution of SPHIRE-crYOLO particle picking and its application in automated cryo-EM processing workflows. Commun. Biol 3: 61.

[46]

Waterhouse, A.,Bertoni, M.,Bienert, S.,Studer, G.,Tauriello, G.,Gumienny, R.,Heer, F.T.,de Beer, T.A.P.,Rempfer, C.,Bordoli, L., et al. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 46: W296-W303.

[47]

Xin, J.,Shi, Y.,Zhang, X.,Yuan, X.,Xin, Y.,He, H.,Shen, J.,Blankenship, R.E., and Xu, X. (2023). Carotenoid assembly regulates quinone diffusion and the Roseiflexus castenholzii reaction center-light harvesting complex architecture. eLife 12: e88951.

[48]

Xin, Y.,Shi, Y.,Niu, T.,Wang, Q.,Niu, W.,Huang, X.,Ding, W.,Yang, L.,Blankenship, R.E.,Xu, X., et al. (2018). Cryo-EM structure of the RC-LH core complex from an early branching photosynthetic prokaryote. Nat. Commun. 9: 1568.

[49]

Yu, L.J.,Suga, M.,Wang-Otomo, Z.Y., and Shen, J.R. (2018). Structure of photosynthetic LH1-RC supercomplex at 1.9 Å resolution. Nature 556: 209-213.

[50]

Zhang, Y.,Qi, C.-H.,Yamano, N.,Wang, P.,Yu, L.-J.,Wang-Otomo, Z.-Y., and Zhang, J.-P. (2022). Carotenoid single-molecular singlet fission and the photoprotection of a bacteriochlorophyll b-Type core light-harvesting antenna. J. Phys. Chem. Lett. 13: 3534-3541.

[51]

Zivanov, J.,Nakane, T., and Scheres, S.H.W. (2020). Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7: 253-267.

RIGHTS & PERMISSIONS

2024 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/