A resurfaced sensor NLR confers new recognition specificity to non-MAX effectors

Tongtong Zhu , Xuefeng Wu , Guixin Yuan , Dongli Wang , Vijai Bhadauria , You-Liang Peng , Junfeng Liu , Xin Zhang

Journal of Integrative Plant Biology ›› 2025, Vol. 67 ›› Issue (1) : 11 -14.

PDF
Journal of Integrative Plant Biology ›› 2025, Vol. 67 ›› Issue (1) : 11 -14. DOI: 10.1002/jipb.13805
Brief Communications

A resurfaced sensor NLR confers new recognition specificity to non-MAX effectors

Author information +
History +
PDF

Cite this article

Download citation ▾
Tongtong Zhu, Xuefeng Wu, Guixin Yuan, Dongli Wang, Vijai Bhadauria, You-Liang Peng, Junfeng Liu, Xin Zhang. A resurfaced sensor NLR confers new recognition specificity to non-MAX effectors. Journal of Integrative Plant Biology, 2025, 67(1): 11-14 DOI:10.1002/jipb.13805

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cesari, S., Xi, Y., Declerck, N., Chalvon, V., Mammri, L., Pugnière, M., Henriquet, C., Guillen, K., Chochois, V., Padilla, A., et al. (2022). New recognition specificity in a plant immune receptor by molecular engineering of its integrated domain. Nat. Commun. 13:1524.

[2]

De la Concepcion, J.C., Franceschetti, M., MacLean, D., Terauchi, R., Kamoun, S., and Banfield, M.J. (2019). Protein engineering expands the effector recognition profile of a rice NLR immune receptor. eLife 8: e47713.

[3]

Guo, L., Cesari, S., de Guillen, K., Chalvon, V., Mammri, L., Ma, M., Meusnier, I., Bonnot, F., Padilla, A., Peng, Y.-L., et al. (2018). Specific recognition of two MAX effectors by integrated HMA domains in plant immune receptors involves distinct binding surfaces. Proc. Natl. Acad. Sci. U.S.A. 115:11637–11642.

[4]

Kourelis, J., Marchal, C., Posbeyikian, A., Harant, A., and Kamoun, S. (2023). NLR immune receptor-nanobody fusions confer plant disease resistance. Science 379:934–939.

[5]

Liu, Y., Zhang, X., Yuan, G., Wang, D., Zheng, Y., Ma, M., Guo, L., Bhadauria, V., Peng, Y.-L., and Liu, J. (2021). A designer rice NLR immune receptor confers resistance to the rice blast fungus carrying noncorresponding avirulence effectors. Proc. Natl. Acad. Sci. U.S.A. 118: e2110751118.

[6]

Maidment, J.H., Shimizu, M., Bentham, A.R., Vera, S., Franceschetti, M., Longya, A., Stevenson, C.E., De la Concepcion, J.C., Białas, A., Kamoun, S., et al. (2023). Effector target-guided engineering of an integrated domain expands the disease resistance profile of a rice NLR immune receptor. Elife 12: e81123.

[7]

Shimizu, M., Hirabuchi, A., Sugihara, Y., Abe, A., Takeda, T., Kobayashi, M., Hiraka, Y., Kanzaki, E., Oikawa, K., Saitoh, H., et al. (2022). A genetically linked pair of NLR immune receptors shows contrasting patterns of evolution. Proc. Natl. Acad. Sci. U.S.A. 119: e2116896119.

[8]

Xiao, G., Laksanavilat, N., Cesari, S., Lambou, K., Baudin, M., Jalilian, A., Telebanco-Yanoria, M.J., Chalvon, V., Meusnier, I., et al. (2024). The unconventional resistance protein PTR recognizes the Magnaporthe oryzae effector AVR-Pita in an allele-specific manner. Nat. Commun. 10:994–1004.

[9]

Zdrzalek, R., Xi, Y., Langner, T., Bentham, A.R., Petit-Houdenot, Y., De la Concepcion, J.C., Harant, A., Shimizu, M., Were, V., Talbot, N.J., et al. (2024). Bioengineering a plant NLR immune receptor with a robust binding interface towards a conserved fungal pathogen effector. Proc. Natl. Acad. Sci. U.S.A. 121: e2402872121.

[10]

Zhang, X., Liu, Y., Yuan, G., Wang, S., Wang, D., Zhu, T., Wu, X., Ma, M., Guo, L., Guo, H., et al. (2024). The synthetic NLR RGA5HMA5 requires multiple interfaces within and outside the integrated domain for effector recognition. Nat. Commun. 15:1104.

RIGHTS & PERMISSIONS

2024 Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/