The MON1–CCZ1 complex plays dual roles in autophagic degradation and vacuolar protein transport in rice

Binglei Zhang , Yihua Wang , Yun Zhu , Tian Pan , Haigang Yan , Xin Wang , Ruonan Jing , Hongming Wu , Fan Wang , Yu Zhang , Xiuhao Bao , Yongfei Wang , Pengcheng Zhang , Yu Chen , Erchao Duan , Xiaohang Han , Gexing Wan , Mengyuan Yan , Xiejun Sun , Cailin Lei , Zhijun Cheng , Zhichao Zhao , Ling Jiang , Yiqun Bao , Yulong Ren , Jianmin Wan

Journal of Integrative Plant Biology ›› 2025, Vol. 67 ›› Issue (1) : 35 -54.

PDF
Journal of Integrative Plant Biology ›› 2025, Vol. 67 ›› Issue (1) : 35 -54. DOI: 10.1002/jipb.13792
Research Article

The MON1–CCZ1 complex plays dual roles in autophagic degradation and vacuolar protein transport in rice

Author information +
History +
PDF

Abstract

Autophagy is a highly conserved cellular program in eukaryotic cells which mediates the degradation of cytoplasmic components through the lysosome, also named the vacuole in plants. However, the molecular mechanisms underlying the fusion of autophagosomes with the vacuole remain unclear. Here, we report the functional characterization of a rice (Oryza sativa) mutant with defects in storage protein transport in endosperm cells and accumulation of numerous autophagosomes in root cells. Cytological and immunocytochemical experiments showed that this mutant exhibits a defect in the fusion between autophagosomes and vacuoles. The mutant harbors a loss-of-function mutation in the rice homolog of Arabidopsis thaliana MONENSIN SENSITIVITY1 (MON1). Biochemical and genetic evidence revealed a synergistic interaction between rice MON1 and AUTOPHAGY-RELATED 8a in maintaining normal growth and development. In addition, the rice mon1 mutant disrupted storage protein sorting to protein storage vacuoles. Furthermore, quantitative proteomics verified that the loss of MON1 function influenced diverse biological pathways including autophagy and vacuolar transport, thus decreasing the transport of autophagic and vacuolar cargoes to vacuoles. Together, our findings establish a molecular link between autophagy and vacuolar protein transport, and offer insights into the dual functions of the MON1–CCZ1 (CAFFEINE ZINC SENSITIVITY1) complex in plants.

Keywords

autophagic degradation / MON1–CCZ1 / Rab7 / rice / vacuolar trafficking

Cite this article

Download citation ▾
Binglei Zhang, Yihua Wang, Yun Zhu, Tian Pan, Haigang Yan, Xin Wang, Ruonan Jing, Hongming Wu, Fan Wang, Yu Zhang, Xiuhao Bao, Yongfei Wang, Pengcheng Zhang, Yu Chen, Erchao Duan, Xiaohang Han, Gexing Wan, Mengyuan Yan, Xiejun Sun, Cailin Lei, Zhijun Cheng, Zhichao Zhao, Ling Jiang, Yiqun Bao, Yulong Ren, Jianmin Wan. The MON1–CCZ1 complex plays dual roles in autophagic degradation and vacuolar protein transport in rice. Journal of Integrative Plant Biology, 2025, 67(1): 35-54 DOI:10.1002/jipb.13792

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Balderhaar, H.J., and Ungermann, C. (2013). CORVET and HOPS tethering complexes-coordinators of endosome and lysosome fusion. J. Cell Sci. 126:1307–1316.

[2]

Balla, T. (2013). Phosphoinositides: Tiny lipids with giant impact on cell regulation. Physiol. Rev. 93:1019–1137.

[3]

Barr, F.A. (2013). Rab GTPases and membrane identity: Causal or inconsequential? J. Cell Biol. 202:191–199.

[4]

Bi, Z.H.,Li, X.,Huang, H.S., and Hua, Y.W. (2016). Identification, functional study, and promoter analysis of HbMFT1, a homolog of MFT from rubber tree (Hevea brasiliensis). Int. J. Mol. Sci. 17:247.

[5]

Bu, F.,Yang, M.K.,Guo, X.,Huang, W., and Chen, L. (2020). Multiple functions of ATG8 family proteins in plant autophagy. Front. Cell. Dev. Biol. 8:466.

[6]

Chen, H.M.,Zou, Y.,Shang, Y.L.,Lin, H.Q.,Wang, Y.J.,Cai, R.,Tang, X.Y., and Zhou, J.M. (2008). Firefly luciferase complementation imaging assay for protein–protein interactions in plants. Plant Physiol. 146:368–376.

[7]

Chung, T.J.,Phillips, A.R., and Vierstra, R.D. (2010). ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci. Plant J. 62:483–493.

[8]

Contento, A.L.,Kim, S.J., and Bassham, D.C. (2004). Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol. 135:2330–2347.

[9]

Cui, Y.,Zhao, Q.,Gao, C.J.,Ding, Y.,Zeng, Y.L.,Ueda, T.,Nakano, A., and Jiang, L.W. (2014). Activation of the Rab7 GTPase by the MON1–CCZ1 complex is essential for PVC-to-vacuole trafficking and plant growth in Arabidopsis. Plant Cell 26:2080–2097.

[10]

Cui, Y.,Zhao, Q.,Xie, H.T.,Wong, W.S.,Wang, X.F.,Gao, C.J.,Ding, Y.,Tan, Y.Q.,Ueda, T.,Zhang, Y., et al. (2017). MONENSIN SENSITIVITY1 (MON1)/CALCIUM CAFFEINE ZINC SENSITIVITY1 (CCZ1)-mediated Rab7 activation regulates tapetal programmed cell death and pollen development. Plant Physiol. 173:206–218.

[11]

Doelling, J.H.,Walker, J.M.,Friedman, E.M.,Thompson, A.R., and Vierstra, R.D. (2002). The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J. Biol. Chem. 277:33105–33114.

[12]

Ebine, K.,Inoue, T.,Ito, J.,Ito, E.,Uemura, T.,Goh, T.,Abe, H.,Sato, K.,Nakano, A., and Ueda, T. (2014). Plant vacuolar trafficking occurs through distinctly regulated pathways. Curr. Biol. 24:1375–1382.

[13]

Fukuda, M.,Wen, L.Y.,Satoh, C.M.,Kawagoe, Y.,Nagamura, Y.,Okita, T.W.,Washida, H.,Sugino, A.,Ishino, S.,Ishino, Y., et al. (2013). A guanine nucleotide exchange factor for Rab5 proteins is essential for intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm. Plant Physiol. 162:663–674.

[14]

Ganley, I.G.,Wong, P.M.,Gammoh, N., and Jiang, X.J. (2011). Distinct autophagosomal–lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol. Cell 42:731–743.

[15]

Gao, C.J.,Luo, M.,Zhao, Q.,Yang, R.Z.,Cui, Y.,Zeng, Y.L.,Xia, J., and Jiang, L.W. (2014). A unique plant ESCRT component, FREE1, regulates multivesicular body protein sorting and plant growth. Curr. Biol. 24:2556–2563.

[16]

Gao, C.J.,Zhuang, X.H.,Cui, Y.,Fu, X.,He, Y.L.,Zhao, Q.,Zeng, Y.L.,Shen, J.B.,Luo, M., and Jiang, L.W. (2015). Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation. Proc. Natl. Acad. Sci. U.S.A. 112:1886–1891.

[17]

Gao, J.Q.,Langemeyer, L.,Kummel, D.,Reggiori, F., and Ungermann, C. (2018). Molecular mechanism to target the endosomal Mon1–Ccz1 GEF complex to the pre-autophagosomal structure. eLife 7: e31145.

[18]

Geldner, N.,Dénervaud-Tendon, V.,Hyman, D.L.,Mayer, U.,Stierhof, Y.D., and Chory, J. (2009). Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J. 59:169–178.

[19]

Gerth, K.,Lin, F.,Menzel, W.,Krishnamoorthy, P.,Stenzel, I.,Heilmann, M., and Heilmann, I. (2017). Guilt by association: A phenotype-based view of the plant phosphoinositide network. Annu. Rev. Plant Biol. 68:349–374.

[20]

Goh, T.,Uchida, W.,Arakawa, S.,Ito, E.,Dainobu, T.,Ebine, K.,Takeuchi, M.,Sato, K.,Ueda, T., and Nakano, A. (2007). VPS9a, the Common Activator for Two Distinct Types of Rab5 GTPases, Is Essential for the Development of Arabidopsis thaliana. Plant Cell 19:3504–3515.

[21]

Gou, W.T.,Li, X.,Guo, S.Y.,Liu, Y.F.,Li, F.Q., and Xie, Q.J. (2019). Autophagy in plant: A new orchestrator in the regulation of the phytohormones homeostasis. Int. J. Mol. Sci. 20:2900.

[22]

Gutierrez, M.G.,Master, S.S.,Singh, S.B.,Taylor, G.A.,Colombo, M.I., and Deretic, V. (2004). Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766.

[23]

Hegedűs, K.,Takáts, S.,Boda, A.,Jipa, A.,Nagy, P.,Varga, K.,Kovács, A.L., and Juhász, G. (2016). The Ccz1-Mon1-Rab7 module and Rab5 control distinct steps of autophagy. Mol. Biol. Cell 27:3132–3142.

[24]

Hu, Z.,Yang, Z.P.,Zhang, Y.,Zhang, A.H.,Lu, Q.T.,Fang, Y., and Lu, C.M. (2022). Autophagy targets Hd1 for vacuolar degradation to regulate rice flowering. Mol. Plant 15:1137–1156.

[25]

Huang, X.,Zheng, C.Y.,Liu, F.,Yang, C.,Zheng, P.,Lu, X.,Tian, J.,Chung, T.J.,Otegui, M.S.,Xiao, S., et al. (2019). Genetic analyses of the Arabidopsis ATG1 kinase complex reveal both kinase-dependent and independent autophagic routes during fixed-carbon starvation. Plant Cell 31:2973–2995.

[26]

Hutin, C.,Nussaume, L.,Moise, N.,Moya, I.,Kloppstech, K., and Havaux, M. (2003). Early light-induced proteins protect Arabidopsis from photooxidative stress. Proc. Natl. Acad. Sci. U.S.A. 100:4921–4926.

[27]

Jacomin, A.C.,Samavedam, S.,Charles, H., and Nezis, I.P. (2017). iLIR@viral: A web resource for LIR motif-containing proteins in viruses. Autophagy 13:1782–1789.

[28]

Jiang, L.W.,Phillips, T.E.,Hamm, C.A.,Drozdowicz, Y.M.,Rea, P.A.,Maeshima, M.,Rogers, S.W., and Rogers, J.C. (2001). The protein storage vacuole: A unique compound organelle. J. Cell Biol. 155:991–1002.

[29]

Kellner, R.,De-la-Concepcion, J.C.,Maqbool, A.,Kamoun, S., and Dagdas, Y.F. (2017). ATG8 expansion: A driver of selective autophagy diversification? Trends Plant Sci. 22:204–214.

[30]

Klink, B.U.,Herrmann, E.,Antoni, C.,Langemeyer, L.,Kiontke, S.,Gatsogiannis, C.,Ungermann, C.,Raunser, S., and Kümmel, D. (2022). Structure of the Mon1–Ccz1 complex reveals molecular basis of membrane binding for Rab7 activation. Proc. Natl. Acad. Sci. U.S.A. 119: e2121494119.

[31]

Kummel, D., and Ungermann, C. (2014). Principles of membrane tethering and fusion in endosome and lysosome biogenesis. Curr. Opin. Cell Biol. 29:61–66.

[32]

Kurusu, T.,Koyano, T.,Hanamata, S.,Kubo, T.,Noguchi, Y.,Yagi, C.,Nagata, N.,Yamamoto, T.,Ohnishi, T.,Okazaki, Y., et al. (2014). OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development. Autophagy 10:878–888.

[33]

Langemeyer, L.,Fröhlich, F., and Ungermann, C. (2018). Rab GTPase function in endosome andlysosome biogenesis. Trends Cell Biol. 28:957–970.

[34]

Levanony, H.,Rubin, R.,Altschuler, Y., and Galili, G. (1992). Evidence for a novel route of wheat storage proteins to vacuoles. J. Cell Biol. 119:1117–1128.

[35]

Li, B.Y.,Niu, F.F.,Zeng, Y.L.,Tse, M.K.,Deng, C.S.,Hong, L.,Gao, S.Y.,Lo, S.W.,Cao, W.H.,Huang, S.X., et al. (2023). Ufmylation reconciles salt stress-induced unfolded protein responses via ER-phagy in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 120: e2208351120.

[36]

Li, F.Q.,Chung, T.J., and Vierstra, R.D. (2014). AUTOPHAGY-RELATED11 plays a critical role in general autophagy-and senescence-induced mitophagy in Arabidopsis. Plant Cell 26:788–807.

[37]

Lin, Y.S.,Ding, Y.,Wang, J.,Shen, J.,Kung, C.H.,Zhuang, X.H.,Cui, Y.,Yin, Z.,Xia, Y.J.,Lin, H.X., et al. (2015). Exocyst-positive organelles and autophagosomes are distinct organelles in plants. Plant Physiol. 169:1917–1932.

[38]

Lin, Y.S.,Zeng, Y.L.,Zhu, Y.,Shen, J.B.,Ye, H., and Jiang, L.W. (2021). Plant Rho GTPase signaling promotes autophagy. Mol. Plant 14:905–920.

[39]

Liu, F.,Hu, W.,Li, F.,Marshall, R.S.,Zarza, X.,Munnik, T., and Vierstra, R.D. (2020). AUTOPHAGY-RELATED14 and its associated phosphatidylinositol 3-kinase complex promote autophagy in Arabidopsis. Plant Cell 32:3939–3960.

[40]

Liu, F.,Ren, Y.L.,Wang, Y.H.,Peng, C.,Zhou, K.N.,Lv, J.,Guo, X.P.,Zhang, X.,Zhong, M.S.,Zhao, S.L., et al. (2013). OsVPS9A functions cooperatively with OsRAB5A to regulate post-Golgi dense vesicle-mediated storage protein trafficking to the protein storage vacuole in rice endosperm cells. Mol. Plant 6:1918–1932.

[41]

Marshall, R.S., and Vierstra, R.D. (2018). Autophagy: The master of bulk and selective recycling. Annu. Rev. Plant Biol. 69:173–208.

[42]

Marshall, R.S.,Li, F.Q.,Gemperline, D.C.,Book, A.J., and Vierstra, R.D. (2015). Autophagic degradation of the 26S proteasome ps mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol. Cell 58:1053–1066.

[43]

McEwan, D.G.,Popovic, D.,Gubas, A.,Terawaki, S.,Suzuki, H.,Stadel, D.,Coxon, F.P.,Miranda de Stegmann, D.,Bhogaraju, S.,Maddi, K., et al. (2015). PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell 57:39–54.

[44]

Minamino, N., and Ueda, T. (2019). RAB GTPases and their effectors in plant endosomal transport. Curr. Opin. Plant Biol. 52:61–68.

[45]

Nakatogawa, H.,Ichimura, Y., and Ohsumi, Y. (2007). Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165–178.

[46]

Nordmann, M.,Ungermann, C., and Cabrera, M. (2012). Role of rab7/ypt7 in organizing membrane trafficking at the late endosome. In Rab GTPases and Membrane Trafficking. Li, G.P.,Nava, S.G., eds, (Netherlands: Bentham Science), pp. 132–143.

[47]

Pan, T.,Wang, Y.H.,Jing, R.N.,Wang, Y.F.,Wei, Z.Y.,Zhang, B.L.,Lei, C.L.,Qi, Y.Z.,Wang, F.,Bao, X.H., et al. (2021). Post-Golgi trafficking of rice storage proteins requires the small GTPase Rab7 activation complex MON1–CCZ1. Plant Physiol. 187:2174–2191.

[48]

Paris, N.,Stanley, C.M.,Jones, R.L., and Rogers, J.C. (1996). Plant cells contain two functionally distinct vacuolar compartments. Cell 85:563–572.

[49]

Phillips, A.R.,Suttangkakul, A., and Vierstra, R.D. (2008). The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 178:1339–1353.

[50]

Poteryaev, D.,Datta, S.,Ackema, K.,Zerial, M., and Spang, A. (2010). Identification of the switch in early-to-late endosome transition. Cell 141:497–508.

[51]

Piekarska, I.,Kucharczyk, R.,Mickowska, B.,Rytka, J., and Rempola, B. (2010). Mutants of the Saccharomyces cerevisiae VPS genes CCZ1 and YPT7 are blocked in different stages of sporulation. Eur. J. Cell Biol. 89:780–787.

[52]

Pitakrattananukool S.,Kawakatsu T.,Anuntalabhochai S.,Takaiwa F. (2012). Overexpression of OsRab7B3, a small GTP-binding protein gene, enhances leaf senescence in transgenic rice. Biosci. Biotechnol. Biochem. 76:1296–1302.

[53]

Pu, Y.,Luo, X., and Bassham, D.C. (2017). TOR-dependent and -independent pathways regulate autophagy in Arabidopsis thaliana. Front. Plant Sci. 8:1204.

[54]

Qi, H.,Xia, F.N.,Xie, L.J.,Yu, L.J.,Chen, Q.F.,Zhuang, X.H.,Wang, Q.,Li, F.Q.,Jiang, L.W.,Xie, Q., et al. (2017). TRAF family proteins regulate autophagy dynamics by modulating AUTOPHAGY PROTEIN6 stability in Arabidopsis. Plant Cell 29:890–911.

[55]

Reggiori, F., and Ungermann, C. (2017). Autophagosome maturation and fusion. J. Mol. Biol. 429:486–496.

[56]

Ren, Y.L.,Wang, Y.H.,Liu, F.,Zhou, K.N.,Ding, Y.,Zhou, F.,Wang, Y.,Liu, K.,Gan, L.,Ma, W.W., et al. (2014). GLUTELIN PRECURSOR ACCUMULATION3 encodes a regulator of post-Golgi vesicular traffic essential for vacuolar protein sorting in rice endosperm. Plant Cell 26:410–425.

[57]

Ren, Y.L.,Wang, Y.H.,Pan, T.,Wang, Y.L.,Wang, Y.F.,Gan, L.,Wei, Z.Y.,Wang, F.,Wu, M.M.,Jing, R.N., et al. (2020). GPA5 encodes a Rab5a effector required for post-Golgi trafficking of rice storage proteins. Plant Cell 32:758–777.

[58]

Ren, Y.L.,Wang, Y.F.,Zhang, Y.,Pan, T.,Duan, E.C.,Bao, X.H.,Zhu, J.P.,Teng, X.,Zhang, P.C.,Gu, C.W., et al. (2022). Endomembrane-mediated storage protein trafficking in plants: Golgi-dependent or Golgi-independent? FEBS Lett. 596:2215–2230.

[59]

Reyes, F.C.,Chung, T.J.,Holding, D.,Jung, R.,Vierstra, R.D., and Otegui, M.S. (2011). Delivery of prolamins to the protein storage vacuole in maize aleurone cells. Plant Cell 23:769–784.

[60]

Shen, J.B.,Zeng, Y.L.,Zhuang, X.H.,Sun, L.,Yao, X.Q.,Pimpl, P., and Jiang, L.W. (2013). Organelle pH in the Arabidopsis endomembrane system. Mol. Plant 6:1419–1437.

[61]

Shimada, T.,Takagi, J.,Ichino, T.,Shirakawa, M., and Hara-Nishimura, I. (2018). Plant vacuoles. Annu. Rev. Plant Biol. 69:123–145.

[62]

Singh, M.K.,Krüger, F.,Beckmann, H.,Brumm, S.,Vermeer, J.E.M.,Munnik, T.,Mayer, U.,Stierhof, Y.D.,Grefen, C.,Schumacher, K., et al. (2014). Protein delivery to vacuole requires SAND protein-dependent Rab GTPase conversion for MVB-vacuole fusion. Curr. Biol. 24:1383–1389.

[63]

Song, S.,Wang, G.F.,Wu, H.,Fan, X.W.,Liang, L.W.,Zhao, H.,Li, S.L.,Hu, Y.,Liu, H.Y.,Ayaad, M., et al. (2020). OsMFT2 is involved in the regulation of ABA signaling-mediated seed germination through interacting with OsbZIP23/66/72 in rice. Plant J. 103:532–546.

[64]

Takai, Y.,Sasaki, T., and Matozaki, T. (2001). Small GTP-binding proteins. Physiol. Rev. 81:153–208.

[65]

Takemoto, K.,Ebine, K.,Askani, J.C.,Krüger, F.,Gonzalez, Z.A.,Ito, E.,Goh, T.,Schumacher, K.,Nakano, A., and Ueda, T. (2018). Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 115: e2457–e2466.

[66]

Thompson, A.R.,Doelling, J.H.,Suttangkakul, A., and Vierstra, R.D. (2005). Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol. 138:2097–2110.

[67]

Thompson, A.R., and Vierstra, R.D. (2005). Autophagic recycling: Lessons from yeast help define the process in plants. Curr. Opin. Plant Biol. 8:165–173.

[68]

Viotti, C. (2014). ER and vacuoles: Never been closer. Front. Plant Sci. 5:20.

[69]

Waadt, R., and Kudla, J. (2008). In planta visualization of protein interactions using bimolecular fluorescence complementation (BiFC). CSH Protoc. 2008: pdb.prot4995.

[70]

Wang, C.W.,Stromhaug, P.E.,Shima, J., and Klionsky, D.J. (2002). The Ccz1–Mon1 protein complex is required for the late step of multiple vacuole delivery pathways. J. Biol. Chem. 277:47917–47927.

[71]

Wang, J.C.,Ren, Y.L.,Liu, X.,Luo, S.,Zhang, X.,Liu, X.,Lin, Q.B.,Zhu, S.S.,Wan, H.,Yang, Y., et al. (2021). Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice. Mol. Plant 14:315–329.

[72]

Wang, Y.H.,Liu, F.,Ren, Y.L.,Wang, Y.L.,Liu, X.,Long, W.H.,Wang, D.,Zhu, J.P.,Zhu, X.P.,Jing, R.N., et al. (2016). GOLGI TRANSPORT 1B regulates protein export from the endoplasmic reticulum in rice endosperm cells. Plant Cell 28:2850–2865.

[73]

Wang, Y.H.,Ren, Y.L.,Liu, X.,Jiang, L.,Chen, L.M.,Han, X.H.,Jin, M.G.,Liu, S.J.,Liu, F.,Lv, J., et al. (2010). OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. Plant J. 64:812–824.

[74]

Wei, H.,Wang, X.L.,He, Y.Q.,Xu, H., and Wang, L. (2021). Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis. EMBO J. 40: e105086.

[75]

Wei, Z.,Pan, T.,Zhao, Y.,Su, B.,Ren, Y., and Qiu, L. (2019). The small GTPase Rab5a and its guanine nucleotide exchange factors are involved in post-Golgi trafficking of storage proteins in developing soybean cotyledon. J. Exp. Bot. 71:808–822.

[76]

Xi, W.Y.,Liu, C.,Hou, X.L., and Yu, H. (2010). MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22:1733–1748.

[77]

Xie, Q.J.,Tzfadia, O.,Levy, M.,Weithorn, E.,Peled-Zehavi, H.,Van-Parys, T.,Van-de-Peer, Y., and Galili, G. (2016). hfAIM: A reliable bioinformatics approach for in silico genome-wide identification of autophagy-associated Atg8-interacting motifs in various organisms. Autophagy 12:876–887.

[78]

Xiong, H.Y.,Hua, L.,Reyna-Llorens, I.,Shi, Y.,Chen, K.M.,Smirnoff, N.,Kromdijk, J., and Hibberd, D.J. (2021). Photosynthesis-independent production of reactive oxygen species in the rice bundle sheath during high light is mediated by NADPH oxidase. Proc. Natl. Acad. Sci. U.S.A. 118: e2022702118.

[79]

Xu, Y.,Yang, J.,Wang, Y.H.,Wang, J.C.,Yu, Y.,Long, Y.,Wang, Y.L.,Zhang, H.,Ren, Y.L.,Chen, J., et al. (2017). OsCNGC13 promotes seed-setting rate by facilitating pollen tube growth in stylar tissues. PLoS Genet. 13: e1006906.

[80]

Yang, C.,Li, X.B.,Yang, L.M.,Chen, S.Q.,Liao, J.,Li, K.L.,Zhou, J.,Shen, W.J.,Zhuang, X.H.,Bai, M.Y., et al. (2023). A positive feedback regulation of SnRK1 signaling by autophagy in plants. Mol. Plant 16:1192–1211.

[81]

Ye, H.,Gao, J.Y.,Liang, Z.Z.,Lin, Y.S.,Yu, Q.Y.,Huang, S.X., and Jiang, L.W. (2022). Arabidopsis ORP2A mediates ER-autophagosomal membrane contact sites and regulates PI3P in plant autophagy. Proc. Natl. Acad. Sci. U.S.A. 119: e2205314119.

[82]

Zeng, Y.L.,Chung, K.P.,Li, B.Y.,Lai, C.M.,Lam, S.K.,Wang, X.F.,Cui, Y.,Gao, C.J.,Luo, M.,Wong, K.B., et al. (2015). Unique COPII component AtSar1a/AtSec. 23a pair is required for the distinct function of protein ER export in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 112:14360–14365.

[83]

Zeng, Y.L.,Li, B.Y.,Huang, S.X.,Li, H.B.,Cao, W.H.,Chen, Y.X.,Liu, G.Y.,Li, Z.P.,Yang, C.,Feng, L., et al. (2023). The plant unique ESCRT component FREE1 regulates autophagosome closure. Nat. Commun. 14:1768.

[84]

Zhang, X.G.,Ding, X.X.,Marshall, R.S.,Paez-Valencia, J.,Lacey, P.,Vierstra, R.D., and Otegui, M.S. (2020). Reticulon proteins modulate autophagy of the endoplasmic reticulum in maize endosperm. eLife 9: e51918.

[85]

Zhou, Y.F.,Qing, T.,Shu, X.L., and Liu, J.X. (2022). Unfolded protein response and storage product accumulation in rice grains. Seed Biol. 1:1–5.

[86]

Zhuang, X.H.,Chung, K.P.,Cui, Y.,Lin, W.L.,Gao, C.J.,Kang, B.H., and Jiang, L.W. (2017). ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 114: e426–e435.

[87]

Zhuang, X.H.,Li, R.X., and Jiang, L.W. (2024). A century journey of organelles research in the plant endomembrane system. Plant Cell 36:1312–1333.

[88]

Zhuang, X.H.,Wang, H.,Lam, S.K.,Gao, C.J.,Wang, X.F.,Cai, Y., and Jiang, L.W. (2013). A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis. Plant Cell 25:4596–4615.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/