Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits

Shan Li , Yu Zhao , Pan Wu , Donald Grierson , Lei Gaoleigao@wbgcas.cn

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (9) : 1831 -1863.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (9) : 1831 -1863. DOI: 10.1002/jipb.13739
Review Article

Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits

Author information +
History +
PDF

Abstract

Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (Solanum lycopersicum). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.

Keywords

fleshy fruit / pathogen / phytohormones / ripening / transcription factors

Cite this article

Download citation ▾
Shan Li, Yu Zhao, Pan Wu, Donald Grierson, Lei Gaoleigao@wbgcas.cn. Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits. Journal of Integrative Plant Biology, 2024, 66(9): 1831-1863 DOI:10.1002/jipb.13739

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abuqamar, S.,Luo, H.,Laluk, K.,Mickelbart, M.V., and Mengiste, T. (2009). Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant J. 58:347–360.

[2]

Adato, A.,Mandel, T.,Mintz-Oron, S.,Venger, I.,Levy, D.,Yativ, M.,Dominguez, E.,Wang, Z.,De Vos, R.C.,Jetter, R., et al. (2009). Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genet. 5:e1000777.

[3]

Agudelo-Romero, P.,Erban, A.,Rego, C.,Carbonell-Bejerano, P.,Nascimento, T.,Sousa, L.,Martinez-Zapater, J.M.,Kopka, J., and Fortes, A.M. (2015). Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. J. Exp. Bot. 66:1769–1785.

[4]

Agudelo-Romero, P.,Erban, A.,Sousa, L.,Pais, M.S.,Kopka, J., and Fortes, A.M. (2013). Search for transcriptional and metabolic markers of grape pre-ripening and ripening and insights into specific aroma development in three Portuguese cultivars. PLoS ONE 8:e60422.

[5]

Ahuja, I.,Kissen, R., and Bones, A.M. (2012). Phytoalexins in defense against pathogens. Trends Plant Sci. 17:73–90.

[6]

Akagi, A.,Dandekar, A.M., and Stotz, H.U. (2011). Resistance of Malus domestica fruit to Botrytis cinerea depends on endogenous ethylene biosynthesis. Phytopathology 101:1311–1321.

[7]

Alkan, N., and Fortes, A.M. (2015). Insights into molecular and metabolic events associated with fruit response to post-harvest fungal pathogens. Front. Plant Sci. 6:889.

[8]

Alkan, N.,Friedlander, G.,Ment, D.,Prusky, D., and Fluhr, R. (2015). Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies. New Phytol. 205:801–815.

[9]

Álvarez-Gómez, T.B.,Ramírez-Trujillo, J.A.,Ramírez-Yáñez, M., and Suárez-Rodríguez, R. (2021). Overexpression of SlERF3b and SlERF5 in transgenic tomato alters fruit size, number of seeds and promotes early flowering, tolerance to abiotic stress and resistance to Botrytis cinerea infection. Ann. Appl. Biol. 179:382–394.

[10]

Andolfo, G.,Sanseverino, W.,Aversano, R.,Frusciante, L., and Ercolano, M.R. (2013a). Genome-wide identification and analysis of candidate genes for disease resistance in tomato. Mol. Breed. 33:227–233.

[11]

Andolfo, G.,Sanseverino, W.,Rombauts, S.,Van de Peer, Y.,Bradeen, J.M.,Carputo, D.,Frusciante, L., and Ercolano, M.R. (2013b). Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important Solanum R locus dynamics. New Phytol. 197:223–237.

[12]

Arcas, M.C.,Botía, J.M.,Ortuño, A.M., and Del Río, J.A. (2000). UV irradiation alters the levels of flavonoids involved in the defence mechanism of fruits against. Eur. J. Plant Pathol. 106:617–622.

[13]

Asghari, M., and Aghdam, M.S. (2010). Impact of salicylic acid on post-harvest physiology of horticultural crops. Trends Food Sci. Technol. 21:502–509.

[14]

Asselbergh, B.,Curvers, K.,Franca, S.C.,Audenaert, K.,Vuylsteke, M.,Van Breusegem, F., and Hofte, M. (2007). Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 144:1863–1877.

[15]

Atkinson, R.G.,Sutherland, P.W.,Johnston, S.L.,Gunaseelan, K.,Hallett, I.C.,Mitra, D.,Brummell, D.A.,Schroder, R.,Johnston, J.W., and Schaffer, R.J. (2012). Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus x domestica) fruit. BMC Plant Biol. 12:129.

[16]

Audenaert, K.,De Meyer, G.B., and Höfte, M.M. (2002). Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol. 128:491–501.

[17]

Bacete, L.,Mélida, H.,Miedes, E., and Molina, A. (2018). Plant cell wall-mediated immunity: Cell wall changes trigger disease resistance responses. Plant J. 93:614–636.

[18]

Ballester, A.R.,Norelli, J.,Burchard, E.,Abdelfattah, A.,Levin, E.,González-Candelas, L.,Droby, S., and Wisniewski, M. (2017). Transcriptomic response of resistant (PI613981-Malus sieversii) and susceptible (“Royal Gala”) genotypes of apple to blue mold (Penicillium expansum) infection. Front. Plant Sci. 8:1981.

[19]

Bassolino, L.,Zhang, Y.,Schoonbeek, H.J.,Kiferle, C.,Perata, P., and Martin, C. (2013). Accumulation of anthocyanins in tomato skin extends shelf life. New Phytol. 200:650–655.

[20]

Bigeard, J.,Colcombet, J., and Hirt, H. (2015). Signaling mechanisms in pattern-triggered immunity (PTI). Mol. Plant 8:521–539.

[21]

Blanco-Ulate, B.,Powell, A.L., and Cantu, D. (2016). Hitting the wall: Plant cell wall implications during Botrytis cinerea infections. In Botrytis—The Fungus, the Pathogen and its Management in Agricultural Systems,S. Fillinger,Y. Elad, eds. (Cham: Springer International Publishing), pp. 361–386.

[22]

Blanco-Ulate, B.,Vincenti, E.,Powell, A.L., and Cantu, D. (2013). Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea. Front. Plant Sci. 4:142.

[23]

Bostock, R.M.,Wilcox, S.M.,Wang, G., and Adaskaveg, J.E. (1999). Suppression of Monilinia fructicola cutinas production by peach fruit surface phenolic acids. Physiol. Mol. Plant Pathol. 54:37–50.

[24]

Browse, J. (2009). Jasmonate passes muster: A receptor and targets for the defense hormone. Annu. Rev. Plant Biol. 60:183–205.

[25]

Brulé D.,Villano, C.,Davies, L.J.,Trdá L.,Claverie, J.,Héloir, M.C.,Chiltz, A.,Adrian, M.,Darblade, B.,Tornero, P., et al. (2019). The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity. Plant Biotechnol. J. 17:812–825.

[26]

Brummell, D.A.,Hall, B.D., and Bennett, A.B. (1999a). Antisense suppression of tomato endo-1, 4-beta-glucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Plant Mol. Biol. 40:615–622.

[27]

Brummell, D.A.,Harpster, M.H.,Civello, P.M.,Palys, J.M.,Bennett, A.B., and Dunsmuir, P. (1999b). Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11:2203–2216.

[28]

Brumos, J. (2021). Gene regulation in climacteric fruit ripening. Curr. Opin. Plant Biol. 63:102042.

[29]

Buxdorf, K.,Rubinsky, G.,Barda, O.,Burdman, S.,Aharoni, A., and Levy, M. (2014). The transcription factor SlSHINE3 modulates defense responses in tomato plants. Plant Mol. Biol. 84:37–47.

[30]

Cai, J., and Aharoni, A. (2022). Amino acids and their derivatives mediating defense priming and growth tradeoff. Curr. Opin. Plant Biol. 69:102288.

[31]

Cai, J.,Chen, T.,Wang, Y.,Qin, G., and Tian, S. (2020). SlREM1 triggers cell death by activating an oxidative burst and other regulators. Plant Physiol. 183:717–732.

[32]

Cai, J.,Jozwiak, A.,Holoidovsky, L.,Meijler, M.M.,Meir, S.,Rogachev, I., and Aharoni, A. (2021). Glycosylation of N-hydroxy-pipecolic acid equilibrates between systemic acquired resistance response and plant growth. Mol. Plant 14:440–455.

[33]

Cai, J.,Li, D., and Aharoni, A. (2023). The role of long-distance mobile metabolites in the plant stress response and signaling. Plant J. 114:1115–1131.

[34]

Cajuste, J.F.,González-Candelas, L.,Veyrat, A.,García-Breijo, F.J.,Reig-Armiñana, J., and Lafuente, M.T. (2010). Epicuticular wax content and morphology as related to ethylene and storage performance of “Navelate” orange fruit. Postharvest Biol. Technol. 55:29–35.

[35]

Camagna, M.,Ojika, M., and Takemoto, D. (2020). Detoxification of the solanaceous phytoalexins rishitin, lubimin, oxylubimin and solavetivone via a cytochrome P450 oxygenase. Plant Signal. Behav. 15:1707348.

[36]

Camejo, D.,Guzman-Cedeno, A., and Moreno, A. (2016). Reactive oxygen species, essential molecules, during plant-pathogen interactions. Plant Physiol. Biochem. 103:10–23.

[37]

Cantu, D.,Blanco-Ulate, B.,Yang, L.,Labavitch, J.M.,Bennett, A.B., and Powell, A.L. (2009). Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene. Plant Physiol. 150:1434–1449.

[38]

Cantu, D.,Vicente, A.R.,Greve, L.C.,Dewey, F.M.,Bennett, A.B.,Labavitch, J.M., and Powell, A.L. (2008). The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. Proc. Natl. Acad. Sci. U.S.A. 105:859–864.

[39]

Cao, S.,Zheng, Y.,Yang, Z.,Tang, S.,Jin, P.,Wang, K., and Wang, X. (2008). Effect of methyl jasmonate on the inhibition of Colletotrichum acutatum infection in loquat fruit and the possible mechanisms. Postharvest Biol. Technol. 49:301–307.

[40]

Cao, X.,Li, X.,Su, Y.,Zhang, C.,Wei, C.,Chen, K.,Grierson, D., and Zhang, B. (2023). Transcription factor PpNAC1 and DNA demethylase PpDML1 synergistically regulate peach fruit ripening. Plant Physiol. 194:2049–2068.

[41]

Catanzariti, A.M.,Lim, G.T.T., and Jones, D.A. (2015). The tomato I-3 gene: A novel gene for resistance to Fusarium wilt disease. New Phytol. 207:106–118.

[42]

Chakravarthy, S.,Tuori, R.P.,D’Ascenzo, M.D.,Fobert, P.R.,Després, C., and Martin, G.B. (2003). The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 15:3033–3050.

[43]

Chan, Z., and Tian, S. (2006). Induction of H2O2-metabolizing enzymes and total protein synthesis by antagonistic yeast and salicylic acid in harvested sweet cherry fruit. Postharvest Biol. Technol. 39:314–320.

[44]

Chan, Z.,Wang, Q.,Xu, X.,Meng, X.,Qin, G.,Li, B., and Tian, S. (2008). Functions of defense-related proteins and dehydrogenases in resistance response induced by salicylic acid in sweet cherry fruits at different maturity stages. Proteomics 8:4791–4807.

[45]

Changwal, C.,Shukla, T.,Hussain, Z.,Singh, N.,Kar, A.,Singh, V.P.,Abdin, M.Z., and Arora, A. (2021). Regulation of postharvest tomato fruit ripening by endogenous salicylic acid. Front. Plant Sci. 12:663943.

[46]

Chen, D.,Wang, T.,Huang, H.,Zhang, Q.,Chen, X.,Sun, Z.,Song, Y.,Yi, Y.,Liu, C.,Grierson, D., et al. (2024). SlCNR regulates postharvest water loss and wax accumulation in tomato fruit and directly represses the transcription of very-long-chain (VLC) alkane biosynthesis-related genes SlCER1-2 and SlCER6. Postharvest Biol. Technol. 208:112641.

[47]

Chen, J.,Mohan, R.,Zhang, Y.,Li, M.,Chen, H.,Palmer, I.A.,Chang, M.,Qi, G.,Spoel, S.H.,Mengiste, T., et al. (2019). NPR1 promotes its own and target gene expression in plant defense by recruiting CDK8. Plant Physiol. 181:289–304.

[48]

Chen, J.,Yang, S.,Fan, B.,Zhu, C., and Chen, Z. (2022). The mediator complex: A central coordinator of plant adaptive responses to environmental stresses. Int. J. Mol. Sci. 23:6170.

[49]

Chen, R.,Jiang, H.,Li, L.,Zhai, Q.,Qi, L.,Zhou, W.,Liu, X.,Li, H.,Zheng, W.,Sun, J., et al. (2012). The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24:2898–2916.

[50]

Courbier, S.,Snoek, B.L.,Kajala, K.,Li, L.,van Wees, S.C.M., and Pierik, R. (2021). Mechanisms of far-red light-mediated dampening of defense against Botrytis cinerea in tomato leaves. Plant Physiol. 187:1250–1266.

[51]

Cristescu, S.M.,De Martinis, D.,Te Lintel Hekkert, S.,Parker, D.H., and Harren, F.J. (2002). Ethylene production by Botrytis cinerea in vitro and in tomatoes. Appl. Environ. Microbiol. 68:5342–5350.

[52]

Curvers, K.,Seifi, H.,Mouille, G.,de Rycke, R.,Asselbergh, B.,Van Hecke, A.,Vanderschaeghe, D.,Hofte, H.,Callewaert, N.,Van Breusegem, F., et al. (2010). Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to Botrytis cinerea. Plant Physiol. 154:847–860.

[53]

D’Esposito, D.,Ferriello, F.,Molin, A.D.,Diretto, G.,Sacco, A.,Minio, A.,Barone, A.,Di Monaco, R.,Cavella, S.,Tardella, L., et al. (2017). Unraveling the complexity of transcriptomic, metabolomic and quality environmental response of tomato fruit. BMC Plant Biol. 17:66.

[54]

de Jonge, R.,van Esse, H.P.,Maruthachalam, K.,Bolton, M.D.,Santhanam, P.,Saber, M.K.,Zhang, Z.,Usami, T.,Lievens, B.,Subbarao, K.V., et al. (2012). Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc. Natl. Acad. Sci. U.S.A. 109:5110–5115.

[55]

De Lorenzo, G.,D’Ovidio, R., and Cervone, F. (2001). The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. Annu. Rev. Phytopathol. 39:313–335.

[56]

De Lorenzo, G.,Ferrari, S.,Giovannoni, M.,Mattei, B., and Cervone, F. (2019). Cell wall traits that influence plant development, immunity, and bioconversion. Plant J. 97:134–147.

[57]

Deng, B.,Wang, W.,Ruan, C.,Deng, L.,Yao, S., and Zeng, K. (2020). Involvement of CsWRKY70 in salicylic acid-induced citrus fruit resistance against Penicillium digitatum. Hortic. Res. 7:157.

[58]

Deng, H.,Chen, Y.,Liu, Z.,Liu, Z.,Shu, P.,Wang, R.,Hao, Y.,Su, D.,Pirrello, J.,Liu, Y., et al. (2022). SlERF.F12 modulates the transition to ripening in tomato fruit by recruiting the co-repressor TOPLESS and histone deacetylases to repress key ripening genes. Plant Cell 34:1250–1272.

[59]

Deng, H.,Pei, Y.,Xu, X.,Du, X.,Xue, Q.,Gao, Z.,Shu, P.,Wu, Y.,Liu, Z.,Jian, Y., et al. (2024). Ethylene-MPK8-ERF.C1-PR module confers resistance against Botrytis cinerea in tomato fruit without compromising ripening. New Phytol. 242:592–609.

[60]

Deng, L.,Yang, T.,Li, Q.,Chang, Z.,Sun, C.,Jiang, H.,Meng, X.,Huang, T.,Li, C.,Zhong, S., et al. (2023). Tomato MED25 regulates fruit ripening by interacting with EIN3-like transcription factors. Plant Cell 35:1038–1057.

[61]

Die, J.V.,Román, B.,Qi, X., and Rowland, L.J. (2018). Genome-scale examination of NBS-encoding genes in blueberry. Sci. Rep. 8:3429.

[62]

Ding, C.K., and Wang, C.Y. (2003). The dual effects of methyl salicylate on ripening and expression of ethylene biosynthetic genes in tomato fruit. Plant Sci. 164:589–596.

[63]

Ding, S.,Zhang, J.,Yang, L.,Wang, X.,Fu, F.,Wang, R.,Zhang, Q., and Shan, Y. (2020). Changes in cuticle components and morphology of “Satsuma” mandarin (Citrus unshiu) during ambient storage and their potential role on Penicillium digitatum infection. Molecules 25:412.

[64]

Dodds, P.N.,Chen, J. and Outram, M.A. (2024). Pathogen perception and signaling in plant immunity. Plant Cell 36:1465–1481.

[65]

Dominguez Puigjaner, E.,Llop, I.,Vendrell, M., and Prat, S. (1997). A cDNA clone highly expressed in ripe banana fruit shows homology to pectate lyases. Plant Physiol. 114:1071–1076.

[66]

Dong, T.,Zheng, T.,Fu, W.,Guan, L.,Jia, H., and Fang, J. (2020). The Effect of ethylene on the color change and resistance to Botrytis cinerea infection in “Kyoho” grape fruits. Foods 9:892.

[67]

Dong, X. (2004). NPR1, all things considered. Curr. Opin. Plant Biol. 7:547–552.

[68]

Du, M.,Zhao, J.,Tzeng, D.T.W.,Liu, Y.,Deng, L.,Yang, T.,Zhai, Q.,Wu, F.,Huang, Z.,Zhou, M., et al. (2017). MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. Plant Cell 29:1883–1906.

[69]

Duan, C.,Meng, X.,Meng, J.,Khan, M.I.H.,Dai, L.,Khan, A.,An, X.,Zhang, J.,Huq, T., and Ni, Y. (2019). Chitosan as a preservative for fruits and vegetables: A review on chemistry and antimicrobial properties. J. Bioresour. Bioprod. 4:11–21.

[70]

Dukare, A.S.,Paul, S.,Nambi, V.E.,Gupta, R.K.,Singh, R.,Sharma, K., and Vishwakarma, R.K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: A review. Crit. Rev. Food Sci. Nutr. 59:1498–1513.

[71]

Durrant, W.E., and Dong, X. (2004). Systemic acquired resistance. Annu. Rev. Phytopathol. 42:185–209.

[72]

Eriksson, E.M.,Bovy, A.,Manning, K.,Harrison, L.,Andrews, J.,De Silva, J.,Tucker, G.A., and Seymour, G.B. (2004). Effect of the colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol. 136:4184–4197.

[73]

Ewas, M.,Harlina, P.W.,Shahzad, R.,Khames, E.,Ali, F.,Nishawy, E.,Elsafty, N.,Ibrahim, H.M., and Gallego, P.P. (2022). Constitutive expression of SlMX1 gene improves fruit yield and quality, health-promoting compounds, fungal resistance and delays ripening in transgenic tomato plants. J. Plant Interact. 17:517–536.

[74]

Fich, E.A.,Segerson, N.A., and Rose, J.K. (2016). The plant polyester cutin: Biosynthesis, structure, and biological roles. Annu. Rev. Plant Biol. 67:207–233.

[75]

Ficke, A.,Gadoury, D.M.,Seem, R.C.,Godfrey, D., and Dry, I.B. (2004). Host barriers and responses to Uncinula necator in developing grape berries. Phytopathology 94:438–445.

[76]

Fillinger, S., and Elad, Y. (2016). Botrytis—The Fungus, the Pathogen and its Management in Agricultural Systems. Cham, Switzerland: Springer International Publishing.

[77]

Fogelman, E.,Stern, R.A., and Ginzberg, I. (2015). Benzyladenine and gibberellin treatment of developing “Pink Lady” apples results in mature fruits with a thicker cuticle comprising clusters of epidermal cells. Protoplasma 252:1009–1017.

[78]

Fresno, D.H., and Munné-Bosch, S. (2021). Differential tissue-specific jasmonic acid, salicylic acid, and abscisic acid dynamics in sweet cherry development and their implications in fruit-microbe interactions. Front. Plant Sci. 12:640601.

[79]

Fujisawa, M.,Nakano, T.,Shima, Y., and Ito, Y. (2013). A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening. Plant Cell 25:371–386.

[80]

Gabler, F.M.,Smilanick, J.L.,Mansour, M.,Ramming, D.W., and Mackey, B.E. (2003). Correlations of morphological, anatomical, and chemical features of grape berries with resistance to Botrytis cinerea. Phytopathology 93:1263–1273.

[81]

Gabriëls, S.H.,Vossen, J.H.,Ekengren, S.K.,van Ooijen, G.,Abd-El-Haliem, A.M.,van den Berg, G.C.,Rainey, D.Y.,Martin, G.B.,Takken, F.L.,de Wit, P.J., et al. (2007). An NB-LRR protein required for HR signalling mediated by both extra-and intracellular resistance proteins. Plant J. 50:14–28.

[82]

Gambhir, P.,Singh, V.,Parida, A.,Raghuvanshi, U.,Kumar, R., and Sharma, A.K. (2022). Ethylene response factor ERF.D7 activates auxin response factor 2 paralogs to regulate tomato fruit ripening. Plant Physiol. 190:2775–2796.

[83]

Gao, Y.,Wei, W.,Zhao, X.,Tan, X.,Fan, Z.,Zhang, Y.,Jing, Y.,Meng, L.,Zhu, B.,Zhu, H., et al. (2018). A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening. Hortic. Res. 5:75.

[84]

Gao, Y.,Zhang, Z.,Cheng, J.,Xian, X.,Li, C., and Wang, Y. (2022). Genome-wide identification of the CER1 gene family in apple and response of MdCER1-1 to drought stress. Funct. Integr. Genomics 23:17.

[85]

Gapper, N.E. (2024). NACs strike again: NOR-like1 is responsible for cuticle development in tomato fruit. J. Exp. Bot. 75:1791–1795.

[86]

García-Coronado, H.,Tafolla-Arellano, J.C.,Hernández-Oñate, M.Á.,Burgara-Estrella, A.J.,Robles-Parra, J.M., and Tiznado-Hernández, M.E. (2022). Molecular biology, composition and physiological functions of cuticle lipids in fleshy fruits. Plants (Basel) 11:1133.

[87]

Ginzberg, I., and Stern, R.A. (2019). Control of fruit cracking by shaping skin traits-apple as a model. Crit. Rev. Plant Sci. 38:401–410.

[88]

Girard, A.L.,Mounet, F.,Lemaire-Chamley, M.,Gaillard, C.,Elmorjani, K.,Vivancos, J.,Runavot, J.L.,Quemener, B.,Petit, J.,Germain, V., et al. (2012). Tomato GDSL1 is required for cutin deposition in the fruit cuticle. Plant Cell 24:3119–3134.

[89]

Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205–227.

[90]

Gong, Z.,Luo, Y.,Zhang, W.,Jian, W.,Zhang, L.,Gao, X.,Hu, X.,Yuan, Y.,Wu, M.,Xu, X., et al. (2021). A SlMYB75-centred transcriptional cascade regulates trichome formation and sesquiterpene accumulation in tomato. J. Exp. Bot. 72:3806–3820.

[91]

González-Aguilar, G.A.,Buta, J.G., and Wang, C.Y. (2003). Methyl jasmonate and modified atmosphere packaging (MAP) reduce decay and maintain postharvest quality of papaya “Sunrise”. Postharvest Biol. Technol. 28:361–370.

[92]

Goyal, N.,Bhatia, G.,Sharma, S.,Garewal, N.,Upadhyay, A.,Upadhyay, S.K., and Singh, K. (2020). Genome-wide characterization revealed role of NBS-LRR genes during powdery mildew infection in Vitis vinifera. Genomics 112:312–322.

[93]

Gu, K.D.,Zhang, Q.Y.,Yu, J.Q.,Wang, J.H.,Zhang, F.J.,Wang, C.K.,Zhao, Y.W.,Sun, C.H.,You, C.X.,Hu, D.G., et al. (2021). R2R3-MYB Transcription factor MdMYB73 confers increased resistance to the fungal pathogen Botryosphaeria dothidea in apples via the salicylic acid pathway. J. Agric. Food Chem. 69:447–458.

[94]

Gu, Y.Q.,Wildermuth, M.C.,Chakravarthy, S.,Loh, Y.T.,Yang, C.,He, X.,Han, Y., and Martin, G.B. (2002). Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:817–831.

[95]

Guan, Y.,Chang, R.,Liu, G.,Wang, Y.,Wu, T.,Han, Z., and Zhang, X. (2015). Role of lenticels and microcracks on susceptibility of apple fruit to Botryosphaeria dothidea. Eur. J. Plant Pathol. 143:317–330.

[96]

Guo, M.,Feng, J.,Zhang, P.,Jia, L., and Chen, K. (2014). Postharvest treatment with trans-2-hexenal induced resistance against Botrytis cinerea in tomato fruit. Australas Plant Pathol. 44:121–128.

[97]

Guo, Q.,Jing, Y.,Gao, Y.,Liu, Y.,Fang, X., and Lin, R. (2023). The PIF1/PIF3-MED25-HDA19 transcriptional repression complex regulates phytochrome signaling in Arabidopsis. New Phytol. 240:1097–1115.

[98]

Guo, W.,Wu, Q.,Yang, L.,Hu, W.,Liu, D., and Liu, Y. (2020). Ectopic expression of CsKCS6 from navel orange promotes the production of very-long-chain fatty acids (VLCFAs) and increases the abiotic stress tolerance of Arabidopsis thaliana. Front. Plant Sci. 11:564656.

[99]

Gupta, P.K. (2020). SWEET genes for disease resistance in plants. Trends Genet. 36:901–904.

[100]

Gupta, P.K.,Balyan, H.S., and Gautam, T. (2021). SWEET genes and TAL effectors for disease resistance in plants: Present status and future prospects. Mol. Plant Pathol. 22:1014–1026.

[101]

Haile, Z.M.,Nagpala-De Guzman, E.G.,Moretto, M.,Sonego, P.,Engelen, K.,Zoli, L.,Moser, C., and Baraldi, E. (2019). Transcriptome profiles of strawberry (Fragaria vesca) fruit interacting with Botrytis cinerea at different ripening stages. Front. Plant Sci. 10:1131.

[102]

Hamilton, A.J.,Lycett, G., and Grierson, D. (1990). Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Plant Physiol. 346:284–287.

[103]

Han, J.,Tian, S.P.,Meng, X.H., and Ding, Z.S. (2006). Response of physiologic metabolism and cell structures in mango fruit to exogenous methyl salicylate under low-temperature stress. Physiol. Plant. 128:125–133.

[104]

Hao, Y.,Xiang, L.,Lai, J.,Li, C.,Zhong, Y.,Ye, W.,Yang, J.,Yang, J., and Wang, S. (2023). SlERF.H6 mediates the orchestration of ethylene and gibberellin signaling that suppresses bitter-SGA biosynthesis in tomato. New Phytol. 239:1353–1367.

[105]

Hashimoto, T.,Hashimoto, K.,Shindo, H.,Tsuboyama, S.,Miyakawa, T.,Tanokura, M., and Kuchitsu, K. (2023). Enhanced Ca2+ binding to EF-hands through phosphorylation of conserved serine residues activates MpRBOHB and chitin-triggered ROS production. Physiol. Plant. 175:e14101.

[106]

He, X.,Liu, K.,Wu, Y.,Xu, W.,Wang, R.,Pirrello, J.,Bouzayen, M.,Wu, M., and Liu, M. (2024). A transcriptional cascade mediated by two APETALA2 family members orchestrates carotenoid biosynthesis in tomato. J. Integr. Plant Biol. 66:1227–1241.

[107]

He, Y.,Jia, R.,Qi, J.,Chen, S.,Lei, T.,Xu, L.,Peng, A.,Yao, L.,Long, Q.,Li, Z., et al. (2019). Functional analysis of citrus AP2 transcription factors identified CsAP2-09 involved in citrus canker disease response and tolerance. Gene 707:178–188.

[108]

Heil, M., and Bostock, R.M. (2002). Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann. Bot. 89:503–512.

[109]

Héloir, M.C.,Adrian, M.,Brulé D.,Claverie, J.,Cordelier, S.,Daire, X.,Dorey, S.,Gauthier, A.,Lemaître-Guillier, C.,Negrel, J., et al. (2019). Recognition of elicitors in grapevine: From MAMP and DAMP perception to induced resistance. Front. Plant Sci. 10:1117.

[110]

Heredia, A.,Heredia-Guerrero, J.A., and Dominguez, E. (2015). CHS silencing suggests a negative cross-talk between wax and flavonoid pathways in tomato fruit cuticle. Plant Signal. Behav. 10:e1019979.

[111]

Hernández, A.,Ruiz-Moyano, S.,Galván, A.I.,Merchán, A.V.,Pérez Nevado, F.,Aranda, E.,Serradilla, M.J.,Córdoba, M.G., and Martín, A. (2021). Anti-fungal activity of phenolic sweet orange peel extract for controlling fungi responsible for post-harvest fruit decay. Fungal Biol. 125:143–152.

[112]

Higuera, J.J.,Garrido-Gala, J.,Lekhbou, A.,Arjona-Girona, I.,Amil-Ruiz, F.,Mercado, J.A.,Pliego-Alfaro, F.,Muñoz-Blanco, J.,López-Herrera, C.J., and Caballero, J.L. (2019). The strawberry FaWRKY1 transcription factor negatively regulates resistance to Colletotrichum acutatum in fruit upon infection. Front. Plant Sci. 10:480.

[113]

Hind, S.R.,Strickler, S.R.,Boyle, P.C.,Dunham, D.M.,Bao, Z.,O’Doherty, I.M.,Baccile, J.A.,Hoki, J.S.,Viox, E.G.,Clarke, C.R., et al. (2016). Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system. Nat. Plants 2:16128.

[114]

Hirai, N.,Sugie, M.,Wada, M.,Lahlou, E.H.,Kamo, T.,Yoshida, R.,Tsuda, M., and Ohigashi, H. (2000). Triterpene phytoalexins from strawberry fruit. Biosci. Biotechnol. Biochem. 64:1707–1712.

[115]

Hong, K.,Gong, D.,Zhang, L.,Hu, H.,Jia, Z.,Gu, H., and Song, K. (2016). Transcriptome characterization and expression profiles of the related defense genes in postharvest mango fruit against Colletotrichum gloeosporioides. Gene 576:275–283.

[116]

Houterman, P.M.,Ma, L.,van Ooijen, G.,de Vroomen, M.J.,Cornelissen, B.J.,Takken, F.L., and Rep, M. (2009). The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly. Plant J. 58:970–978.

[117]

Hovav, R.,Chehanovsky, N.,Moy, M.,Jetter, R., and Schaffer, A.A. (2007). The identification of a gene (Cwp1), silenced during Solanum evolution, which causes cuticle microfissuring and dehydration when expressed in tomato fruit. Plant J. 52:627–639.

[118]

Hu, C.,Wu, S.,Li, J.,Dong, H.,Zhu, C.,Sun, T.,Hu, Z.,Foyer, C.H., and Yu, J. (2022). Herbivore-induced Ca2+ signals trigger a jasmonate burst by activating ERF16-mediated expression in tomato. New Phytol. 236:1796–1808.

[119]

Hu, G.,Huang, B.,Wang, K.,Frasse, P.,Maza, E.,Djari, A.,Benhamed, M.,Gallusci, P.,Li, Z.,Zouine, M., et al. (2021). Histone posttranslational modifications rather than DNA methylation underlie gene reprogramming in pollination-dependent and pollination-independent fruit set in tomato. New Phytol. 229:902–919.

[120]

Isaacson, T.,Kosma, D.K.,Matas, A.J.,Buda, G.J.,He, Y.,Yu, B.,Pravitasari, A.,Batteas, J.D.,Stark, R.E.,Jenks, M.A., et al. (2009). Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss. Plant J. 60:363–377.

[121]

Itkin, M.,Rogachev, I.,Alkan, N.,Rosenberg, T.,Malitsky, S.,Masini, L.,Meir, S.,Iijima, Y.,Aoki, K.,de Vos, R., et al. (2011). GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell 23:4507–4525.

[122]

Jaiswal, N.,Liao, C.J.,Mengesha, B.,Han, H.,Lee, S.,Sharon, A.,Zhou, Y., and Mengiste, T. (2022). Regulation of plant immunity and growth by tomato receptor-like cytoplasmic kinase TRK1. New Phytol. 233:458–478.

[123]

Jeon, C.,Chung, M.Y., and Lee, J.M. (2024). Reassessing the contribution of TOMATO AGAMOUS-LIKE1 to fruit ripening by CRISPR/Cas9 mutagenesis. Plant Cell Rep. 43:41.

[124]

Jersch, S.,Scherer, C.D.,Huth, G., and Schlösser, E.A. (1989). Proanthocyanidins as basis for quiescence of Botrytis cinerea in immature strawberry fruits. J. Plant Dis. Protect. 96:365–378.

[125]

Jia, H.,Zhang, C.,Pervaiz, T.,Zhao, P.,Liu, Z.,Wang, B.,Wang, C.,Zhang, L.,Fang, J., and Qian, J. (2016). Jasmonic acid involves in grape fruit ripening and resistant against Botrytis cinerea. Funct. Integr. Genomics 16:79–94.

[126]

Jia, H.F.,Chai, Y.M.,Li, C.L.,Lu, D.,Luo, J.J.,Qin, L., and Shen, Y.Y. (2011). Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol. 157:188–199.

[127]

Jia, S.,Wang, Y.,Zhang, G.,Yan, Z., and Cai, Q. (2020). Strawberry FaWRKY25 transcription factor negatively regulated the resistance of strawberry fruits to Botrytis cinerea. Genes (Basel) 12:56.

[128]

Jian, W.,Cao, H.,Yuan, S.,Liu, Y.,Lu, J.,Lu, W.,Li, N.,Wang, J.,Zou, J.,Tang, N., et al. (2019). SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits. Hortic. Res. 6:22.

[129]

Jian, W.,Ou, X.,Sun, L.,Chen, Y.,Liu, S.,Lu, W.,Yang, X.,Zhao, Z., and Li, Z. (2023). Characterization of anthocyanin accumulation, nutritional properties, and postharvest attributes of transgenic purple tomato. Food Chem. 408:135181.

[130]

Jiao, W.,Li, X.,Wang, X.,Cao, J., and Jiang, W. (2018). Chlorogenic acid induces resistance against Penicillium expansum in peach fruit by activating the salicylic acid signaling pathway. Food Chem. 260:274–282.

[131]

Jiménez-Bermúdez, S.,Redondo-Nevado, J.,Muñoz-Blanco, J.,Caballero, J.L.,López-Aranda, J.M.,Valpuesta, V.,Pliego-Alfaro, F.,Quesada, M.A., and Mercado, J.A. (2002). Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiol. 128:751–759.

[132]

Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444:323–329.

[133]

Jung, H.W.,Tschaplinski, T.J.,Wang, L.,Glazebrook, J., and Greenberg, J.T. (2009). Priming in systemic plant immunity. Science 324:89–91.

[134]

Karlova, R.,Rosin, F.M.,Busscher-Lange, J.,Parapunova, V.,Do, P.T.,Fernie, A.R.,Fraser, P.D.,Baxter, C.,Angenent, G.C., and de Maagd, R.A. (2011). Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 23:923–941.

[135]

Klee, H.J., and Giovannoni, J.J. (2011). Genetics and control of tomato fruit ripening and quality attributes. Annu. Rev. Genet. 45:41–59.

[136]

Konarska, A. (2013). The structure of the fruit peel in two varieties of Malus domestica Borkh. (Rosaceae) before and after storage. Protoplasma 250:701–714.

[137]

Kosma, D.K.,Parsons, E.P.,Isaacson, T., S.,Rose, J.K., and Jenks, M.A. (2010). Fruit cuticle lipid composition during development in tomato ripening mutants. Physiol. Plant. 139:107–117.

[138]

Lara, I.,Belge, B., and Goulao, L.F. (2014). The fruit cuticle as a modulator of postharvest quality. Postharvest Biol. Technol. 87:103–112.

[139]

Lara, I.,Heredia, A., and Domínguez, E. (2019). Shelf life potential and the fruit cuticle: The unexpected player. Front. Plant Sci. 10:770.

[140]

Lashbrook, C.C.,Giovannoni, J.J.,Hall, B.D.,Fischer, R.L., and Bennett, A.B. (2002). Transgenic analysis of tomato endo-β-1, 4-glucanase gene function. Role of cel1 in floral abscission. Plant J. 13:303–310.

[141]

Lashbrooke, J.,Adato, A.,Lotan, O.,Alkan, N.,Tsimbalist, T.,Rechav, K.,Fernandez-Moreno, J.P.,Widemann, E.,Grausem, B.,Pinot, F., et al. (2015a). The tomato MIXTA-Like transcription factor coordinates fruit epidermis conical cell development and cuticular lipid biosynthesis and assembly. Plant Physiol. 169:2553–2571.

[142]

Lashbrooke, J.,Aharoni, A., and Costa, F. (2015b). Genome investigation suggests MdSHN3, an APETALA2-domain transcription factor gene, to be a positive regulator of apple fruit cuticle formation and an inhibitor of russet development. J. Exp. Bot. 66:6579–6589.

[143]

Lattanzio, V.,Di Venere, D.,Linsalata, V.,Bertolini, P.,Ippolito, A., and Salerno, M. (2001). Low temperature metabolism of apple phenolics and quiescence of Phlyctaena vagabunda. J. Agric. Food Chem. 49:5817–5821.

[144]

Lattanzio, V.,Lattanzio, V.,Cardinali, A., and Imperato, F. (2006). Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemisty 661:23–67.

[145]

Lee, J.M.,Joung, J.G.,McQuinn, R.,Chung, M.Y.,Fei, Z.J.,Tieman, D.,Klee, H., and Giovannoni, J. (2012). Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant J. 70:191–204.

[146]

Lee, K.,Lee, J.G.,Min, K.,Choi, J.H.,Lim, S., and Lee, E.J. (2021). Transcriptome analysis of the fruit of two strawberry cultivars “Sunnyberry” and “Kingsberry” that show different susceptibility to Botrytis cinerea after harvest. Int. J. Mol. Sci. 22:1518.

[147]

Lee, M.B.,Han, H., and Lee, S. (2023). ) The role of WRKY transcription factors,FaWRKY29 and FaWRKY64, for regulating Botrytis fruit rot resistance in strawberry (Fragaria x ananassa Duch.). BMC Plant Biol. 23:420.

[148]

Lefevere, H.,Bauters, L., and Gheysen, G. (2020). Salicylic acid biosynthesis in plants. Front. Plant Sci. 11:338.

[149]

Leide, J.,Hildebrandt, U.,Reussing, K.,Riederer, M., and Vogg, G. (2007). The developmental pattern of tomato fruit wax accumulation and its impact on cuticular transpiration barrier properties: Effects of a deficiency in a beta-ketoacyl-coenzyme A synthase (LeCER6). Plant Physiol. 144:1667–1679.

[150]

Leng, P.,Yuan, B., and Guo, Y. (2014). The role of abscisic acid in fruit ripening and responses to abiotic stress. J. Exp. Bot. 65:4577–4588.

[151]

Leonhardt, S.D.,Baumann, A.M.,Wallace, H.M.,Brooks, P., and Schmitt, T. (2014). The chemistry of an unusual seed dispersal mutualism: Bees use a complex set of olfactory cues to find their partner. Anim. Behav. 98:41–51.

[152]

Levesque-Tremblay, G.,Pelloux, J.,Braybrook, S.A., and Müller, K. (2015). Tuning of pectin methylesterification: Consequences for cell wall biomechanics and development. Planta 242:791–811.

[153]

Li, B.J.,Grierson, D.,Shi, Y., and Chen, K.S. (2022a). Roles of abscisic acid in regulating ripening and quality of strawberry, a model non-climacteric fruit. Hortic. Res. 9:uhac089.

[154]

Li, B.J.,Shi, Y.N.,Jia, H.R.,Yang, X.F.,Sun, Y.F.,Lu, J.,Giovannoni, J.J.,Jiang, G.H.,Rose, J.K.C., and Chen, K.S. (2023a). Abscisic acid mediated strawberry receptacle ripening involves the interplay of multiple phytohormone signaling networks. Front. Plant Sci. 14:1117156.

[155]

Li, C.W.,Su, R.C.,Cheng, C.P.,Sanjaya, You, S.J.,Hsieh, T.H.,Chao, T.C., and Chan, M.T. (2011). Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway. Plant Physiol. 156:213–227.

[156]

Li, F.,Min, D.,Ren, C.,Dong, L.,Shu, P.,Cui, X., and Zhang, X. (2019). Ethylene altered fruit cuticular wax, the expression of cuticular wax synthesis-related genes and fruit quality during cold storage of apple (Malus domestica Borkh. c.v. Starkrimson) fruit. Postharvest Biol. Technol. 149:58–65.

[157]

Li, H.,Chen, Y.,Zhang, Z.,Li, B.,Qin, G., and Tian, S. (2018). Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables. Food Qual. Saf. 2:111–119.

[158]

Li, J.J.,Zhang, C.L.,Zhang, Y.L.,Gao, H.N.,Wang, H.B.,Jiang, H., and Li, Y.Y. (2022b). An apple long-chain acyl-CoA synthase, MdLACS1, enhances biotic and abiotic stress resistance in plants. Plant Physiol. Biochem. 189:115–125.

[159]

Li, P.,Lu, Y.J.,Chen, H., and Day, B. (2020a). The lifecycle of the plant immune system. CRC Crit. Rev. Plant. Sci. 39:72–100.

[160]

Li, P.,Zhao, L.,Qi, F.,Htwe, N.,Li, Q.,Zhang, D.,Lin, F.,Shang-Guan, K., and Liang, Y. (2021). The receptor-like cytoplasmic kinase RIPK regulates broad-spectrum ROS signaling in multiple layers of plant immune system. Mol. Plant 14:1652–1667.

[161]

Li, Q.,Ji, K.,Sun, Y.,Luo, H.,Wang, H., and Leng, P. (2013b). The role of FaBG3 in fruit ripening and B. cinerea fungal infection of strawberry. Plant J. 76:24–35.

[162]

Li, R.,Sun, S.,Wang, H.,Wang, K.,Yu, H.,Zhou, Z.,Xin, P.,Chu, J.,Zhao, T.,Wang, H., et al. (2020b). FIS1 encodes a GA2-oxidase that regulates fruit firmness in tomato. Nat. Commun. 11:5844.

[163]

Li, S.,Wu, P.,Yu, X.,Cao, J.,Chen, X.,Gao, L.,Chen, K., and Grierson, D. (2022c). Contrasting roles of ethylene response factors in pathogen response and ripening in fleshy fruit. Cells 11:2484.

[164]

Li, S.,Zhu, B.,Pirrello, J.,Xu, C.,Zhang, B.,Bouzayen, M.,Chen, K., and Grierson, D. (2020c). Roles of RIN and ethylene in tomato fruit ripening and ripening-associated traits. New Phytol. 226:460–475.

[165]

Li, T.,Xu, Y.,Zhang, L.,Ji, Y.,Tan, D.,Yuan, H., and Wang, A. (2017). The jasmonate-activated transcription factor MdMYC2 regulates ETHYLENE RESPONSE FACTOR and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening. Plant Cell 29:1316–1334.

[166]

Li, X.,Ma, L.,Wang, Y.,Ye, C.,Guo, C.,Li, Y.,Mei, X.,Du, F., and Huang, H. (2023b). PlantNLRatlas: A comprehensive dataset of full-and partial-length NLR resistance genes across 100 chromosome-level plant genomes. Front. Plant Sci. 14:1178069.

[167]

Li, X.,Martin-Pizarro, C.,Zhou, L.,Hou, B.,Wang, Y.,Shen, Y.,Li, B.,Pose, D., and Qin, G. (2023c). Deciphering the regulatory network of the NAC transcription factor FvRIF, a key regulator of strawberry (Fragaria vesca) fruit ripening. Plant Cell 35:4020–4045.

[168]

Li, X.,Zhu, X.,Mao, J.,Zou, Y.,Fu, D.,Chen, W., and Lu, W. (2013a). Isolation and characterization of ethylene response factor family genes during development, ethylene regulation and stress treatments in papaya fruit. Plant Physiol. Biochem. 70:81–92.

[169]

Li, Y.,Chen, Y.,Zhou, L.,You, S.,Deng, H.,Chen, Y.,Alseekh, S.,Yuan, Y.,Fu, R.,Zhang, Z., et al. (2020d). MicroTom metabolic network: Rewiring tomato metabolic regulatory network throughout the growth cycle. Mol. Plant 13:1203–1218.

[170]

Li, Y.,Zhu, B.,Xu, W.,Zhu, H.,Chen, A.,Xie, Y.,Shao, Y., and Luo, Y. (2007). LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato. Plant Cell Rep. 26:1999–2008.

[171]

Li, Z.,Jiang, G.,Liu, X.,Ding, X.,Zhang, D.,Wang, X.,Zhou, Y.,Yan, H.,Li, T.,Wu, K., et al. (2020e). Histone demethylase SlJMJ6 promotes fruit ripening by removing H3K27 methylation of ripening-related genes in tomato. New Phytol. 227:1138–1156.

[172]

Li, Z.,Wang, N.,Wei, Y.,Zou, X.,Jiang, S.,Xu, F.,Wang, H., and Shao, X. (2020f). Terpinen-4-ol enhances disease resistance of postharvest strawberry fruit more effectively than tea tree oil by activating the phenylpropanoid metabolism pathway. J. Agric. Food Chem. 68:6739–6747.

[173]

Lian, X.Y.,Gao, H.N.,Jiang, H.,Liu, C., and Li, Y.Y. (2021). MdKCS2 increased plant drought resistance by regulating wax biosynthesis. Plant Cell Rep. 40:2357–2368.

[174]

Liang, Q.,Deng, H.,Li, Y.,Liu, Z.,Shu, P.,Fu, R.,Zhang, Y.,Pirrello, J.,Zhang, Y.,Grierson, D., et al. (2020). Like Heterochromatin Protein 1b represses fruit ripening via regulating the H3K27me3 levels in ripening-related genes in tomato. New Phytol. 227:485–497.

[175]

Liebrand, T.W.,van den Berg, G.C.,Zhang, Z.,Smit, P.,Cordewener, J.H.,America, A.H.,Sklenar, J.,Jones, A.M.,Tameling, W.I.,Robatzek, S., et al. (2013). Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proc. Natl. Acad. Sci. U.S.A. 110:10010–10015.

[176]

Lim, G.H.,Singhal, R.,Kachroo, A., and Kachroo, P. (2017). Fatty acid-and lipid-mediated signaling in plant defense. Annu. Rev. Phytopathol. 55:505–536.

[177]

Liu, C.,Chen, L.,Zhao, R.,Li, R.,Zhang, S.,Yu, W.,Sheng, J., and Shen, L. (2019a). Melatonin induces disease resistance to Botrytis cinerea in tomato fruit by activating jasmonic acid signaling pathway. J. Agric. Food Chem. 67:6116–6124.

[178]

Liu, A.C.,Cheng, C.P. (2017). Pathogen-induced ERF68 regulates hypersensitive cell death in tomato. Mol. Plant Pathol. 18:1062–1074.

[179]

Liu, D.,Guo, W.,Guo, X.,Yang, L.,Hu, W.,Kuang, L.,Huang, Y.,Xie, J., and Liu, Y. (2022). Ectopic overexpression of CsECR from navel orange increases cuticular wax accumulation in tomato and enhances its tolerance to drought stress. Front. Plant Sci. 13:924552.

[180]

Liu, D.,He, X.,Li, W.,Chen, C., and Ge, F. (2012). A β-1, 3-glucanase gene expressed in fruit of Pyrus pyrifolia enhances resistance to several pathogenic fungi in transgenic tobacco. Eur. J. Plant Pathol. 135:265–277.

[181]

Liu, G.S.,Huang, H.,Grierson, D.,Gao, Y.,Ji, X.,Peng, Z.Z.,Li, H.L.,Niu, X.L.,Jia, W.,He, J.L., et al. (2023a). NAC transcription factor SlNOR-like1 plays a dual regulatory role in tomato fruit cuticle formation. J. Exp. Bot. 19:erad410.

[182]

Liu, G.S.,Li, H.L.,Peng, Z.Z.,Liu, R.L.,Han, Y.C.,Wang, Y.X.,Zhao, X.D., and Fu, D.Q. (2023b). Composition, metabolism and postharvest function and regulation of fruit cuticle: A review. Food Chem. 411:135449.

[183]

Liu, M.,Chen, Y.,Chen, Y.,Shin, J.H.,Mila, I.,Audran, C.,Zouine, M.,Pirrello, J., and Bouzayen, M. (2018). The tomato ethylene response factor Sl-ERF.B3 integrates ethylene and auxin signaling via direct regulation of Sl-Aux/IAA27. New Phytol. 219:631–640.

[184]

Liu, M.,Diretto, G.,Pirrello, J.,Roustan, J.P.,Li, Z.,Giuliano, G.,Regad, F., and Bouzayen, M. (2014). The chimeric repressor version of an Ethylene Response Factor (ERF) family member,Sl-ERF.B3, shows contrasting effects on tomato fruit ripening. New Phytol. 203:206–218.

[185]

Liu, M.,Zhang, Z.,Xu, Z.,Wang, L.,Chen, C., and Ren, Z. (2021a). Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato. Plant Cell Rep. 40:43–58.

[186]

Liu, X.,Cui, X.,Ji, D.,Zhang, Z.,Li, B.,Xu, Y.,Chen, T., and Tian, S. (2021b). Luteolin-induced activation of the phenylpropanoid metabolic pathway contributes to quality maintenance and disease resistance of sweet cherry. Food Chem. 342:128309.

[187]

Liu, Y.,Du, M.,Deng, L.,Shen, J.,Fang, M.,Chen, Q.,Lu, Y.,Wang, Q.,Li, C., and Zhai, Q. (2019b). MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. Plant Cell 31:106–127.

[188]

Lu, B.,Wang, Y.,Zhang, G.,Feng, Y.,Yan, Z.,Wu, J., and Chen, X. (2020). Genome-wide identification and expression analysis of the strawberry FvbZIP gene family and the role of key gene FabZIP46 in fruit resistance to gray mold. Plants (Basel) 9:1199.

[189]

P.,Yu, S.,Zhu, N.,Chen, Y.R.,Zhou, B.,Pan, Y.,Tzeng, D.,Fabi, J.P.,Argyris, J.,Garcia-Mas, J., et al. (2018). Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nat. Plants 4:784–791.

[190]

Lu, Q.,Zhang, W.,Gao, J.,Lu, M.,Zhang, L., and Li, J. (2015). Simultaneous determination of plant hormones in peach based on dispersive liquid-liquid microextraction coupled with liquid chromatography-ion trap mass spectrometry. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 992:8–13.

[191]

Macho, Alberto P., and Zipfel, C. (2014). Plant PRRs and the activation of innate immune signaling. Mol. Cell 54:263–272.

[192]

Madi, L.,Wang, X.,Kobiler, I.,Lichter, A., and Prusky, D. (2003). Stress on avocado fruits regulates Δ9-stearoyl ACP desaturase expression, fatty acid composition, antifungal diene level and resistance to Colletotrichum gloeosporioides attack. Physiol. Mol. Plant Pathol. 62:277–283.

[193]

Marcos, J.F.,González-Candelas, L., and Zacarías, L. (2005). Involvement of ethylene biosynthesis and perception in the susceptibility of citrus fruits to Penicillium digitatum infection and the accumulation of defence-related mRNAs. J. Exp. Bot. 56:2183–2193.

[194]

Marín-Rodríguez, M.C.,Orchard, J., and Seymour, G.B. (2002). Pectate lyases, cell wall degradation and fruit softening. J. Exp. Bot. 53:2115–2119.

[195]

Matas, A.J.,Gapper, N.E.,Chung, M.Y.,Giovannoni, J.J., and Rose, J.K. (2009). Biology and genetic engineering of fruit maturation for enhanced quality and shelf-life. Curr. Opin. Biotechnol. 20:197–203.

[196]

Mauch-Mani, B.,Baccelli, I.,Luna, E., and Flors, V. (2017). Defense priming: An adaptive part of induced resistance. Annu. Rev. Plant Biol. 68:485–512.

[197]

Mauch-Mani, B., and Mauch, F. (2005). The role of abscisic acid in plant-pathogen interactions. Curr. Opin. Plant Biol. 8:409–414.

[198]

Mehdy, M.C. (1994). Active oxygen species in plant defense against pathogens. Plant Physiol. 105:467–472.

[199]

Mehli, L.,Schaart, J.G.,Kjellsen, T.D.,Tran, D.H.,Salentijn, E.M.J.,Schouten, H.J., and Iversen, T.H. (2004). A gene encoding a polygalacturonase-inhibiting protein (PGIP) shows developmental regulation and pathogen-induced expression in strawberry. New Phytol. 163:99–110.

[200]

Meng, D.,Li, C.,Park, H.J.,Gonzalez, J.,Wang, J.,Dandekar, A.M.,Turgeon, B.G., and Cheng, L. (2018). Sorbitol modulates resistance to Alternaria alternata by regulating the expression of an NLR resistance gene in apple. Plant Cell 30:1562–1581.

[201]

Miedes, E.,Herbers, K.,Sonnewald, U., and Lorences, E.P. (2010). Overexpression of a cell wall enzyme reduces xyloglucan depolymerization and softening of transgenic tomato fruits. J. Agric. Food Chem. 58:5708–5713.

[202]

Min, D.,Li, F.,Cui, X.,Zhou, J.,Li, J.,Ai, W.,Shu, P.,Zhang, X.,Li, X.,Meng, D., et al. (2020). SlMYC2 are required for methyl jasmonate-induced tomato fruit resistance to Botrytis cinerea. Food Chem. 310:125901.

[203]

Mittler, R. (2017). ROS are good. Trends Plant Sci. 22:11–19.

[204]

Moore, J.W.,Loake, G.J., and Spoel, S.H. (2011). Transcription dynamics in plant immunity. Plant Cell 23:2809–2820.

[205]

Morales-Quintana, L.,Monsalve, L.,Bernales, M.,Figueroa, C.R.,Valdenegro, M.,Olivares, A.,Álvarez, F.,Cherian, S., and Fuentes, L. (2023). Molecular dynamics simulation of the interaction of a raspberry polygalacturonase (RiPG) with a PG inhibiting protein (RiPGIP) isolated from ripening raspberry (Rubus idaeus cv. Heritage) fruit as a model to understand proteins interaction during fruit softening. J. Mol. Graph. Model. 122:108502.

[206]

Nguyen, C.V.,Vrebalov, J.T.,Gapper, N.E.,Zheng, Y.,Zhong, S.,Fei, Z., and Giovannoni, J.J. (2014). Tomato GOLDEN2-LIKE transcription factors reveal molecular gradients that function during fruit development and ripening. Plant Cell 26:585–601.

[207]

Nieuwenhuizen, N.J.,Green, S., and Atkinson, R.G. (2010). Floral sesquiterpenes and their synthesis in dioecious kiwifruit. Plant Signal. Behav. 5:61–63.

[208]

Nomoto, M.,Skelly, M.J.,Itaya, T.,Mori, T.,Suzuki, T.,Matsushita, T.,Tokizawa, M.,Kuwata, K.,Mori, H.,Yamamoto, Y.Y., et al. (2021). Suppression of MYC transcription activators by the immune cofactor NPR1 fine-tunes plant immune responses. Cell Rep. 37:110125.

[209]

Nunan, K.J.,Davies, C.,Robinson, S.P., and Fincher, G.B. (2001). Expression patterns of cell wall-modifying enzymes during grape berry development. Planta 214:257–264.

[210]

Oeller, P.W.,Lu, M.W.,Taylor, L.P.,Pike, D.A., and Theologis, A. (1991). Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254:437–439.

[211]

Oikawa, A.,Otsuka, T.,Nakabayashi, R.,Jikumaru, Y.,Isuzugawa, K.,Murayama, H.,Saito, K., and Shiratake, K. (2015). Metabolic profiling of developing pear fruits reveals dynamic variation in primary and secondary metabolites, including plant hormones. PLoS ONE 10:e0131408.

[212]

Oldroyd, G.E., and Staskawicz, B.J. (1998). Genetically engineered broad-spectrum disease resistance in tomato. Proc. Natl. Acad. Sci. U.S.A. 95:10300–10305.

[213]

Oliveira Lino, L.,Quilot-Turion, B.,Dufour, C.,Corre, M.N.,Lessire, R.,Génard, M., and Poëssel, J.L. (2020). Cuticular waxes of nectarines during fruit development in relation to surface conductance and susceptibility to Monilinia laxa. J. Exp. Bot. 71:5521–5537.

[214]

Osman, S.,Mohammad, E.,Lidschreiber, M.,Stuetzer, A.,Bazsó F.L.,Maier, K.C.,Urlaub, H., and Cramer, P. (2021). The Cdk8 kinase module regulates interaction of the mediator complex with RNA polymerase II. J. Biol. Chem. 296:100734.

[215]

Ordaz-Ortiz, J.J.,Marcus, S.E., and Knox, J.P. (2009). Cell wall microstructure analysis implicates hemicellulose polysaccharides in cell adhesion in tomato fruit pericarp parenchyma. Mol. Plant 2:910–921.

[216]

Ortega-Salazar, I.,Crum, D.,Sbodio, A.O.,Sugiyama, Y.,Adaskaveg, A.,Wang, D.,Seymour, G.B.,Li, X.,Wang, S.C., and Blanco-Ulate, B. (2023). Double CRISPR knockout of pectin degrading enzymes improves tomato shelf-life while ensuring fruit quality. Plants People Planet 6:330–340.

[217]

Ouyang, Z.,Liu, S.,Huang, L.,Hong, Y.,Li, X.,Huang, L.,Zhang, Y.,Zhang, H.,Li, D., and Song, F. (2016). Tomato SlERF.A1, SlERF.B4, SlERF.C3 and SlERF.A3, members of B3 group of ERF Family, are required for resistance to Botrytis cinerea. Front. Plant Sci. 7:1964.

[218]

Pan, X.Q.,Fu, D.Q.,Zhu, B.Z.,Lu, C.W., and Luo, Y.B. (2013). Overexpression of the ethylene response factor SlERF1 gene enhances resistance of tomato fruit to Rhizopus nigricans. Postharvest Biol. Technol. 75:28–36.

[219]

Paniagua, C.,Blanco-Portales, R.,Barceló-Muñoz, M.,Garcia-Gago, J.A.,Waldron, K.W.,Quesada, M.A.,Muñoz-Blanco, J., and Mercado, J.A. (2016). Antisense down-regulation of the strawberry beta-galactosidase gene FaβGal4 increases cell wall galactose levels and reduces fruit softening. J. Exp. Bot. 67:619–631.

[220]

Paniagua, C.,Santiago-Doménech, N.,Kirby, A.R.,Gunning, A.P.,Morris, V.J.,Quesada, M.A.,Matas, A.J., and Mercado, J.A. (2017). Structural changes in cell wall pectins during strawberry fruit development. Plant Physiol. Biochem. 118:55–63.

[221]

Park, Y.S.,Im, M.H., and Gorinstein, S. (2014). Shelf life extension and antioxidant activity of “Hayward” kiwi fruit as a result of prestorage conditioning and 1-methylcyclopropene treatment. J. Food Sci. Technol. 52:2711–2720.

[222]

Pei, Y.,Xue, Q.,Shu, P.,Xu, W.,Du, X.,Wu, M.,Liu, K.,Pirrello, J.,Bouzayen, M.,Hong, Y., et al. (2024). Bifunctional transcription factors SlERF.H5 and H7 activate cell wall and repress gibberellin biosynthesis genes in tomato via a conserved motif. Dev. Cell. 59:1345–1359.

[223]

Pei, Y.G.,Xue, Q.H.,Zhang, Z.H.,Shu, P.,Deng, H.,Bouzayen, M.,Hong, Y.G., and Liu, M.C. (2023). β-1, 3-GLUCANASE10 regulates tomato development and disease resistance by modulating callose deposition. Plant Physiol. 192:2785–2802.

[224]

Peng, Y.,van Wersch, R., and Zhang, Y. (2018). Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity. Mol. Plant Microbe Interact. 31:403–409.

[225]

Peng, Z.,Li, H.,Liu, G.,S, X.,Zhao, X.,Grierson, D.,Xiang, L.,He, J.,Qu, G.,Zhu, H., et al. (2024). Tomato NAC transcription factor NOR-like1 positively regulates tomato fruit softening. Postharvest Biol. Technol. 213:112923.

[226]

Pérez-Llorca, M.,Muñoz, P.,Müller, M., and Munné-Bosch, S. (2019). Biosynthesis, metabolism and function of auxin, salicylic acid and melatonin in climacteric and non-climacteric fruits. Front. Plant Sci. 10:136.

[227]

Perini, M.A.,Sin, I.N.,Villarreal, N.M.,Marina, M.,Powell, A.L.,Martinez, G.A., and Civello, P.M. (2017). Overexpression of the carbohydrate binding module from Solanum lycopersicum expansin 1 (Sl-EXP1) modifies tomato fruit firmness and Botrytis cinerea susceptibility. Plant Physiol. Biochem. 113:122–132.

[228]

Petit, J.,Bres, C.,Mauxion, J.P.,Tai, F.W.,Martin, L.B.,Fich, E.A.,Joubès, J.,Rose, J.K.,Domergue, F., and Rothan, C. (2016). The glycerol-3-phosphate acyltransferase GPAT6 from tomato plays a central role in fruit cutin biosynthesis. Plant Physiol. 171:894–913.

[229]

Petrasch, S.,Silva, C.J.,Mesquida-Pesci, S.D.,Gallegos, K.,van den Abeele, C.,Papin, V.,Fernandez-Acero, F.J.,Knapp, S.J., and Blanco-Ulate, B. (2019). Infection strategies deployed by Botrytis cinerea,Fusarium acuminatum, and Rhizopus stolonifer as a function of tomato fruit ripening stage. Front. Plant Sci. 10:223.

[230]

Phan, T.D.,Bo, W.,West, G.,Lycett, G.W., and Tucker, G.A. (2007). Silencing of the major salt-dependent isoform of pectinesterase in tomato alters fruit softening. Plant Physiol. 144:1960–1967.

[231]

Philippe, G.,Geneix, N.,Petit, J.,Guillon, F.,Sandt, C.,Rothan, C.,Lahaye, M.,Marion, D., and Bakan, B. (2020). Assembly of tomato fruit cuticles: A cross-talk between the cutin polyester and cell wall polysaccharides. New Phytol. 226:809–822.

[232]

Pieterse, C.M.,Van der Does, D.,Zamioudis, C.,Leon-Reyes, A., and Van Wees, S.C. (2012). Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28:489–521.

[233]

Pieterse, C.M.,Zamioudis, C.,Berendsen, R.L.,Weller, D.M.,Van Wees, S.C., and Bakker, P.A. (2014). Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347–375.

[234]

Picton, S.,Barton, S.L.,Bouzayen, M.,Hamilton, A.J., and Grierson, D. (1993). Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. Plant J. 3:469–481.

[235]

Powell, A.L.,Kalamaki, M.S.,Kurien, P.A.,Gurrieri, S., and Bennett, A.B. (2003). Simultaneous transgenic suppression of LePG and LeExp1 influences fruit texture and juice viscosity in a fresh market tomato variety. J. Agric. Food Chem. 51:7450–7455.

[236]

Powell, A.L.,van Kan, J.,ten Have, A.,Visser, J.,Greve, L.C.,Bennett, A.B., and Labavitch, J.M. (2000). Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol. Plant Microbe Interact. 13:942–950.

[237]

Protsenko, M.A.,Buza, N.L.,Krinitsyna, A.A.,Bulantseva, E.A., and Korableva, N.P. (2008). Polygalacturonase-inhibiting protein is a structural component of plant cell wall. Biochemistry (Mosc.) 73:1053–1062.

[238]

Prusky, D.,Alkan, N.,Mengiste, T., and Fluhr, R. (2013). Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annu. Rev. Phytopathol. 51:155–176.

[239]

Prusky, D., and Romanazzi, G. (2023). Induced resistance in fruit and vegetables: A host physiological response limiting postharvest diseasedevelopment. Annu. Rev. Phytopathol. 61:279–300.

[240]

Qi, C.H.,Zhao, X.Y.,Jiang, H.,Zheng, P.F.,Liu, H.T.,Li, Y.Y., and Hao, Y.J. (2018). Isolation and functional identification of an apple MdCER1 gene. Plant Cell Tiss. Org. 136:1–13.

[241]

Quesada, M.A.,Blanco-Portales, R.,Posé S.,García-Gago, J.A.,Jiménez-Bermúdez, S.,Muñoz-Serrano, A.S.,Caballero, J.L.,Pliego-Alfaro, F.,Mercado, J.A., and Muñoz-Blanco, J. (2009). Antisense down-regulation of the FaPG1 gene reveals an unexpected central role for polygalacturonase in strawberry fruit softening. Plant Physiol. 150:1022–1032.

[242]

Rahman, T.A.,Oirdi, M.E.,Gonzalez-Lamothe, R., and Bouarab, K. (2012). Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato. Mol. Plant Microbe Interact. 25:1584–1593.

[243]

Ramanathan, V.,Simpson, C.G.,Thow, G.,Iannetta, P.P.M.,McNicol, R.J., and Williamson, B. (1997). cDNA cloning and expression of polygalacturonaseinhibiting proteins (PGIPs) from red raspberry (Rubus idaeus). J. Exp. Bot. 48:1185–1193.

[244]

Reid, M.S., and Staby, G.L. (2008). A brief history of 1-methylcyclopropene. HortScience 43:83–85.

[245]

Rios, J.C.,Robledo, F.,Schreiber, L.,Zeisler, V.,Lang, E.,Carrasco, B., and Silva, H. (2015). Association between the concentration of n-alkanes and tolerance to cracking in commercial varieties of sweet cherry fruits. Sci. Hortic. 197:57–65.

[246]

Rivas, S., and Thomas, C.M. (2005). Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. Annu. Rev. Phytopathol. 43:395–436.

[247]

Rodríguez, A.,Kava, V.,Latorre-García, L.,da Silva, Jr., G.J.,Pereira, R.G.,Glienke, C.,Ferreira-Maba, L.S.,Vicent, A.,Shimada, T., and Peña, L. (2018). Engineering d-limonene synthase down-regulation in orange fruit induces resistance against the fungus Phyllosticta citricarpa through enhanced accumulation of monoterpene alcohols and activation of defence. Mol. Plant Pathol. 19:2077–2093.

[248]

Rodríguez, A.,San Andrés, V.,Cervera, M.,Redondo, A.,Alquézar, B.,Shimada, T.,Gadea, J.,Rodrigo, M.J.,Zacarías, L.,Palou, L., et al. (2011). Terpene down-regulation in orange reveals the role of fruit aromas in mediating interactions with insect herbivores and pathogens. Plant Physiol. 156:793–802.

[249]

Romanazzi, G.,Feliziani, E.,Baños, S.B., and Sivakumar, D. (2017). Shelf life extension of fresh fruit and vegetables by chitosan treatment. Crit. Rev. Food Sci. Nutr. 57:579–601.

[250]

Ron, M., and Avni, A. (2004). The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604–1615.

[251]

Saijo, Y.,Loo, E.P., and Yasuda, S. (2018). Pattern recognition receptors and signaling in plant-microbe interactions. Plant J. 93:592–613.

[252]

Saladié M.,Matas, A.J.,Isaacson, T.,Jenks, M.A.,Goodwin, S.M.,Niklas, K.J.,Xiaolin, R.,Labavitch, J.M.,Shackel, K.A.,Fernie, A.R., et al. (2007). A reevaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol. 144:1012–1028.

[253]

Salguero-Linares, J., and Coll, N.S. (2019). Plant proteases in the control of the hypersensitive response. J. Exp. Bot. 70:2087–2095.

[254]

Samuels, L.,Kunst, L., and Jetter, R. (2008). Sealing plant surfaces: Cuticular wax formation by epidermal cells. Annu. Rev. Plant Biol. 59:683–707.

[255]

Sang, K.,Li, J.,Qian, X.,Yu, J.,Zhou, Y., and Xia, X. (2022). The APETALA2a/DWARF/BRASSINAZOLE-RESISTANT 1 module contributes to carotenoid synthesis in tomato fruits. Plant J. 112:1238–1251.

[256]

Santiago-Doménech, N.,Jiménez-Bemúdez, S.,Matas, A.J.,Rose, J.K.,Munoz-Blanco, J.,Mercado, J.A., and Quesada, M.A. (2008). Antisense inhibition of a pectate lyase gene supports a role for pectin depolymerization in strawberry fruit softening. J. Exp. Bot. 59:2769–2779.

[257]

Scheer, J.M., and Ryan, C.A. (2002). The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proc. Natl. Acad. Sci. U.S.A. 99:9585–9590.

[258]

Schwendel, B.H.,Anekal, P.V.,Zarate, E.,Bang, K.W.,Guo, G.,Grey, A.C., and Pinu, F.R. (2021). Mass spectrometry-based metabolomics to investigate the effect of mechanical shaking on sauvignon blanc berry metabolism. J. Agric. Food Chem. 69:4918–4933.

[259]

Segado, P.,Domínguez, E., and Heredia, A. (2016). Ultrastructure of the epidermal cell wall and cuticle of tomato fruit (Solanum lycopersicum L.) during development. Plant Physiol. 170:935–946.

[260]

Seymour, G.B.,Østergaard, L.,Chapman, N.H.,Knapp, S., and Martin, C. (2013). Fruit development and ripening. Annu. Rev. Plant Biol. 64:219–241.

[261]

Shan, W.,Chen, J.Y.,Kuang, J.F., and Lu, W.J. (2016). Banana fruit NAC transcription factor MaNAC5 cooperates with MaWRKYs to enhance the expression of pathogenesis-related genes against Colletotrichum musae. Mol. Plant Pathol. 17:330–338.

[262]

Shao, Z.Q.,Xue, J.Y.,Wu, P.,Zhang, Y.M.,Wu, Y.,Hang, Y.Y.,Wang, B., and Chen, J.Q. (2016). Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiol. 170:2095–2109.

[263]

Shi, J.X.,Adato, A.,Alkan, N.,He, Y.,Lashbrooke, J.,Matas, A.J.,Meir, S.,Malitsky, S.,Isaacson, T.,Prusky, D., et al. (2013). The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning. New Phytol. 197:468–480.

[264]

Shi, X.,Gupta, S., and Rashotte, A.M. (2014). Characterization of two tomato AP2/ERF genes,SlCRF1 and SlCRF2 in hormone and stress responses. Plant Cell Rep. 33:35–45.

[265]

Shi, Y.,Li, B.J.,Grierson, D., and Chen, K.S. (2023). Insights into cell wall changes during fruit softening from transgenic and naturally occurring mutants. Plant Physiol. 192:1671–1683.

[266]

Shi, Y.,Li, B.J.,Su, G.,Zhang, M.,Grierson, D., and Chen, K.S. (2022). Transcriptional regulation of fleshy fruit texture. J. Integr. Plant Biol. 64:1649–1672.

[267]

Shinde, B.A.,Dholakia, B.B.,Hussain, K.,Aharoni, A.,Giri, A.P., and Kamble, A.C. (2018). WRKY1 acts as a key component improving resistance against Alternaria solani in wild tomato,Solanum arcanum Peralta. Plant Biotechnol. J. 16:1502–1513.

[268]

Shu, P.,Li, Z.,Min, D.,Zhang, X.,Ai, W.,Li, J.,Zhou, J.,Li, Z.,Li, F., and Li, X. (2020). CRISPR/Cas9-mediated SlMYC2 mutagenesis adverse to tomato plant growth and MeJA-induced fruit resistance to Botrytis cinerea. J. Agric. Food Chem. 68:5529–5538.

[269]

Silva, C.J.,Adaskaveg, J.A.,Mesquida-Pesci, S.D.,Ortega-Salazar, I.B.,Pattathil, S.,Zhang, L.,Hahn, M.G.,van Kan, J.A.L.,Cantu, D.,Powell, A.L.T., et al. (2023). Botrytis cinerea infection accelerates ripening and cell wall disassembly to promote disease in tomato fruit. Plant Physiol. 191:575–590.

[270]

Silva, C.J.,van den Abeele, C.,Ortega-Salazar, I.,Papin, V.,Adaskaveg, J.A.,Wang, D.,Casteel, C.L.,Seymour, G.B.,Blanco-Ulate, B., and Vicente, A. (2021). Host susceptibility factors render ripe tomato fruit vulnerable to fungal disease despite active immune responses. J. Exp. Bot. 72:2696–2709.

[271]

Singh, N.K.,Paz, E.,Kutsher, Y.,Reuveni, M., and Lers, A. (2020). Tomato T2 ribonuclease LE is involved in the response to pathogens. Mol. Plant Pathol. 21:895–906.

[272]

Sinha, M.,Singh, R.P.,Kushwaha, G.S.,Iqbal, N.,Singh, A.,Kaushik, S.,Kaur, P.,Sharma, S., and Singh, T.P. (2014). Current overview of allergens of plant pathogenesis related protein families. ScientificWorldJournal 2014:543195.

[273]

Smith, C.J.S.,Watson, C.F.,Ray, J.,Bird, C.R.,Morris, P.C.,Schuch, W., and Grierson, D. (1988). Antisense rna inhibition of polygalacturonase gene-expression in transgenic tomatoes. Nature 334:724–726.

[274]

Smith, D.L.,Abbott, J.A., and Gross, K.C. (2002). Down-regulation of tomato β-galactosidase 4 results in decreased fruit softening. Plant Physiol. 129:1755–1762.

[275]

Soumpourou, E.,Iakovidis, M.,Chartrain, L.,Lyall, V., and Thomas, C.M. (2007). The Solanum pimpinellifolium Cf-ECP1 and Cf-ECP4 genes for resistance to Cladosporium fulvum are located at the Milky Way locus on the short arm of chromosome 1. Theor. Appl. Genet. 115:1127–1136.

[276]

Srivastava, M.K., and Dwivedi, U.N. (2000). Delayed ripening of banana fruit by salicylic acid. Plant Sci. 158:87–96.

[277]

Su, G.,Lin, Y.,Wang, C.,Lu, J.,Liu, Z.,He, Z.,Shu, X.,Chen, W.,Wu, R.,Li, B., et al. (2023). Expansin SlExp1 and endoglucanase SlCel2 synergistically promote fruit softening and cell wall disassembly in tomato. Plant Cell 24:koad291.

[278]

Sueldo, D.J.,Shimels, M.,Spiridon, L.N.,Caldararu, O.,Petrescu, A.J.,Joosten, M.H., and Tameling, W.I. (2015). Random mutagenesis of the nucleotide-binding domain of NRC1 (NB-LRR Required for Hypersensitive Response-Associated Cell Death-1), a downstream signalling nucleotide-binding, leucine-rich repeat (NB-LRR) protein, identifies gain-of-function mutations in the nucleotide-binding pocket. New Phytol. 208:210–223.

[279]

Sun, M.,Qiu, L.,Liu, Y.,Zhang, H.,Zhang, Y.,Qin, Y.,Mao, Y.,Zhou, M.,Du, X.,Qin, Z., et al. (2022). Pto interaction proteins: Critical regulators in plant development and stress response. Front. Plant Sci. 13:774229.

[280]

Sun, Y.,Liang, B.,Wang, J.,Kai, W.,Chen, P.,Jiang, L.,Du, Y., and Leng, P. (2018). SlPti4 affects regulation of fruit ripening, seed germination and stress responses by modulating ABA signaling in tomato. Plant Cell Physiol. 59:1956–1965.

[281]

Szymański, J.,Bocobza, S.,Panda, S.,Sonawane, P.,Cardenas, P.D.,Lashbrooke, J.,Kamble, A.,Shahaf, N.,Meir, S.,Bovy, A., et al. (2020). Analysis of wild tomato introgression lines elucidates the genetic basis of transcriptome and metabolome variation underlying fruit traits and pathogen response. Nat. Genet. 52:1111–1121.

[282]

Tang, Y.,Kuang, J.F.,Wang, F.Y.,Chen, L.,Hong, K.Q.,Xiao, Y.Y.,Xie, H.,Lu, W.J., and Chen, J.Y. (2013). Molecular characterization of PR and WRKY genes during SA-and MeJA-induced resistance against Colletotrichum musae in banana fruit. Postharvest Biol. Technol. 79:62–68.

[283]

Tang, Y.,Li, Y.,Bi, Y., and Wang, Y. (2017). Role of pear fruit cuticular wax and surface hydrophobicity in regulating the prepenetration phase of Alternaria alternata infection. J. Phytopathol. 165:313–322.

[284]

Thines, B.,Katsir, L.,Melotto, M.,Niu, Y.,Mandaokar, A.,Liu, G.,Nomura, K.,He, S.Y.,Howe, G.A., and Browse, J. (2007). JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665.

[285]

Thomma, B.P.,Nürnberger, T., and Joosten, M.H. (2011). Of PAMPs and effectors: The blurred PTI-ETI dichotomy. Plant Cell 23:4–15.

[286]

Tian, F.,Yang, D.C.,Meng, Y.Q.,Jin, J., and Gao, G. (2020). PlantRegMap: Charting functional regulatory maps in plants. Nucleic Acids Res. 48:D1104–D1113.

[287]

Tian, S.,Qin, G., and Li, B. (2013). Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Mol. Biol. 82:593–602.

[288]

Tian, S.,Wan, Y.,Qin, G., and Xu, Y. (2006). Induction of defense responses against Alternaria rot by different elicitors in harvested pear fruit. Appl. Microbiol. Biotechnol. 70:729–734.

[289]

Tieman, D.M.,Harriman, R.W.,Ramamohan, G., and Handa, A.K. (1992). An antisense pectin methylesterase gene alters pectin chemistry and soluble solids in tomato fruit. Plant Cell 4:667–679.

[290]

Ton, J.,Flors, V., and Mauch-Mani, B. (2009). The multifaceted role of ABA in disease resistance. Trends Plant Sci. 14:310–317.

[291]

Torres, M.A., and Dangl, J.L. (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol. 8:397–403.

[292]

Trivedi, P.,Nguyen, N.,Hykkerud, A.L.,Haggman, H.,Martinussen, I.,Jaakola, L., and Karppinen, K. (2019). Developmental and environmental regulation of cuticular wax biosynthesis in fleshy fruits. Front. Plant Sci. 10:431.

[293]

Tsuda, K., and Katagiri, F. (2010). Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr. Opin. Plant Biol. 13:459–465.

[294]

Uluisik, S.,Chapman, N.H.,Smith, R.,Poole, M.,Adams, G.,Gillis, R.B.,Besong, T.M.,Sheldon, J.,Stiegelmeyer, S.,Perez, L., et al. (2016). Genetic improvement of tomato by targeted control of fruit softening. Nat. Biotechnol. 34:950–952.

[295]

Uluisik, S., and Seymour, G.B. (2020). Pectate lyases: Their role in plants and importance in fruit ripening. Food Chem. 309:125559.

[296]

Upadhyay, R.K.,Motyka, V.,Pokorna, E.,Dobrev, P.I.,Lacek, J.,Shao, J.,Lewers, K.S., and Mattoo, A.K. (2023). Comprehensive profiling of endogenous phytohormones and expression analysis of 1-aminocyclopropane-1-carboxylic acid synthase gene family during fruit development and ripening in octoploid strawberry (Fragaria x ananassa). Plant Physiol. Biochem. 196:186–196.

[297]

Valenzuela-Riffo, F.,Zúñiga, P.E.,Morales-Quintana, L.,Lolas, M.,Cáceres, M., and Figueroa, C.R. (2020). Priming of defense systems and upregulation of MYC2 and JAZ1 genes after Botrytis cinerea inoculation in methyl jasmonate-treated strawberry fruits. Plants (Basel) 9:447.

[298]

Vallarino, J.G.,Yeats, T.H.,Maximova, E.,Rose, J.K.,Fernie, A.R., and Osorio, S. (2017). Postharvest changes in LIN5-down-regulated plants suggest a role for sugar deficiency in cuticle metabolism during ripening. Phytochemistry 142:11–20.

[299]

van der Ent, S., and Pieterse, C.M.J. (2012). Ethylene: Multi-tasker in plant-attacker interactions. In Annu. Plant Rev. 44:343–377.

[300]

Vanholme, R.,Cesarino, I.,Rataj, K.,Xiao, Y.,Sundin, L.,Goeminne, G.,Kim, H.,Cross, J.,Morreel, K.,Araujo, P., et al. (2013). Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science 341:1103–1106.

[301]

van Loon, L.C.,Geraats, B.P., and Linthorst, H.J. (2006). Ethylene as a modulator of disease resistance in plants. Trends Plant Sci. 11:184–191.

[302]

Vlot, A.C.,Dempsey, D.A., and Klessig, D.F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47:177–206.

[303]

Voxeur, A., and Hofte, H. (2016). Cell wall integrity signaling in plants: “To grow or not to grow that’s the question”. Glycobiology 26:950–960.

[304]

Walley, J.W.,Kliebenstein, D.J.,Bostock, R.M., and Dehesh, K. (2013). Fatty acids and early detection of pathogens. Curr. Opin. Plant Biol. 16:520–526.

[305]

Wang, D.,Lu, Q.,Wang, X.,Ling, H., and Huang, N. (2023). Elucidating the role of SlXTH5 in tomato fruit softening. Horticultural. Plant J. 9:777–788.

[306]

Wang, D.,Samsulrizal, N.H.,Yan, C.,Allcock, N.S.,Craigon, J.,Blanco-Ulate, B.,Ortega-Salazar, I.,Marcus, S.E.,Bagheri, H.M.,Perez Fons, L., et al. (2019a). Characterization of CRISPR mutants targeting genes modulating pectin degradation in ripening tomato. Plant Physiol. 179:544–557.

[307]

Wang, D.,Yang, L.,Silva, C.J.,Sarwar, R.,Chen, Y.,Blanco-Ulate, B. (2022a). Pectin-mediated plant immunity. Annu. Plant Rev. 5:55–80.

[308]

Wang, D.,Yeats, T.H.,Uluisik, S.,Rose, J.K.C., and Seymour, G.B. (2018). Fruit softening: Revisiting the role of pectin. Trends Plant Sci. 23:302–310.

[309]

Wang, J.,Sun, L.,Xie, L.,He, Y.,Luo, T.,Sheng, L.,Luo, Y.,Zeng, Y.,Xu, J.,Deng, X., et al. (2016a). Regulation of cuticle formation during fruit development and ripening in “Newhall” navel orange (Citrus sinensis Osbeck) revealed by transcriptomic and metabolomic profiling. Plant Sci. 243:131–144.

[310]

Wang, J.,Zheng, C.,Shao, X.,Hu, Z.,Li, J.,Wang, P.,Wang, A.,Yu, J., and Shi, K. (2020a). Transcriptomic and genetic approaches reveal an essential role of the NAC transcription factor SlNAP1 in the growth and defense response of tomato. Hortic. Res. 7:209.

[311]

Wang, J.H.,Gu, K.D.,Han, P.L.,Yu, J.Q.,Wang, C.K.,Zhang, Q.Y.,You, C.X.,Hu, D.G., and Hao, Y.J. (2020b). Apple ethylene response factor MdERF11 confers resistance to fungal pathogen Botryosphaeria dothidea. Plant Sci. 291:110351.

[312]

Wang, L.,Albert, M.,Einig, E.,Furst, U.,Krust, D., and Felix, G. (2016b). The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein. Nat. Plants 2:16185.

[313]

Wang, L.,Liu, W., and Wang, Y. (2020c). Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea. Plant Sci. 293:110421.

[314]

Wang, T.,Jia, Z.H.,Zhang, J.Y.,Liu, M.,Guo, Z.R., and Wang, G. (2020d). Identification and analysis of NBS-LRR genes in Actinidia chinensis genome. Plants (Basel) 9:1350.

[315]

Wang, W.,Cai, J.,Wang, P.,Tian, S., and Qin, G. (2017). Post-transcriptional regulation of fruit ripening and disease resistance in tomato by the vacuolar protease SlVPE3. Genome Biol. 18:47.

[316]

Wang, W.,Ouyang, J.,Li, Y.,Zhai, C.,He, B.,Si, H.,Chen, K.,Rose, J.K.C., and Jia, W. (2024). A signaling cascade mediating fruit trait development via phosphorylation-modulated nuclear accumulation of JAZ repressor. J. Integr. Plant Biol. 66:1106–1125.

[317]

Wang, X.,Zeng, W.,Ding, Y.,Wang, Y.,Niu, L.,Yao, J.L.,Pan, L.,Lu, Z.,Cui, G.,Li, G., et al. (2019b). PpERF3 positively regulates ABA biosynthesis by activating PpNCED2/3 transcription during fruit ripening in peach. Hortic. Res. 6:19.

[318]

Wang, Y.,He, Y.,Zhang, M.,Li, J.,Xu, X.,Shi, X., and Meng, L. (2022b). Slltpg3, a non-specific lipid transfer protein, acts on the cuticle synthetic pathway to delay water loss and softening of tomato fruit. Postharvest Biol. Technol. 188:111899.

[319]

Wang, Y.,Ji, D.,Chen, T.,Li, B.,Zhang, Z.,Qin, G., and Tian, S. (2019c). Production, signaling, and scavenging mechanisms of reactive oxygen species in fruit-pathogen interactions. Int. J. Mol. Sci. 20:2994.

[320]

Wang, Y.,Yang, X.,Chen, Z.,Zhang, J.,Si, K.,Xu, R.,He, Y.,Zhu, F., and Cheng, Y. (2022c). Function and transcriptional regulation of CsKCS20 in the elongation of very-long-chain fatty acids and wax biosynthesis in flavedo. Hortic. Res. 9:uhab027.

[321]

Wang, Y.,Zhao, F.,Zhang, G.,Jia, S., and Yan, Z. (2021). FaWRKY11 transcription factor positively regulates resistance to Botrytis cinerea in strawberry fruit. Sci. Hortic. 279:109893.

[322]

Waszczak, C.,Carmody, M., and Kangasjärvi, J. (2018). Reactive oxygen species in plant signaling. Annu. Rev. Plant Biol. 69:209–236.

[323]

Wit, P.J., and Flach, W. (1979). Differential accumulation of phytoalexins in tomato leaves but not in fruits after inoculation with virulent and avirulent races of Cladosporium fulvum. Physiol. Plant Pathol. 15:257–267.

[324]

Wu, H.,Liu, L.,Chen, Y.,Liu, T.,Jiang, Q.,Wei, Z.,Li, C., and Wang, Z. (2022a). Tomato SlCER1-1 catalyzes the synthesis of wax alkanes which increases the drought tolerance and fruit storability. Hortic. Res. 9:uhac004.

[325]

Wu, K.,Tian, L.,Hollingworth, J.,Brown, D.C.W., and Miki, B. (2002). Functional analysis of tomato Pti4 in Arabidopsis. Plant Physiol. 128:30–37.

[326]

Wu, S.,Hu, C.,Zhu, C.,Fan, Y.,Zhou, J.,Xia, X.,Shi, K.,Zhou, Y.,Foyer, C.H., and Yu, J. (2024). The MYC2-PUB22-JAZ4 module plays a crucial role in jasmonate signaling in tomato. Mol. Plant 17:598–613.

[327]

Wu, X.,Yin, H.,Chen, Y.,Li, L.,Wang, Y.,Hao, P.,Cao, P.,Qi, K., and Zhang, S. (2017). Chemical composition, crystal morphology and key gene expression of cuticular waxes of Asian pears at harvest and after storage. Postharvest Biol. Technol. 132:71–80.

[328]

Wu, Y.,Li, X.,Zhang, J.,Zhao, H.,Tan, S.,Xu, W.,Pan, J.,Yang, F., and Pi, E. (2022b). ERF subfamily transcription factors and their function in plant responses to abiotic stresses. Front. Plant Sci. 13:1042084.

[329]

Wu, Y.Y.,Liu, X.F.,Fu, B.L.,Zhang, Q.Y.,Tong, Y.,Wang, J.,Wang, W.Q.,Grierson, D., and Yin, X.R. (2020). Methyl jasmonate enhances ethylene synthesis in kiwifruit by inducing NAC genes that activate ACS1. J. Agric. Food Chem. 68:3267–3276.

[330]

Xu, D.,Deng, Y.,Xi, P.,Yu, G.,Wang, Q.,Zeng, Q.,Jiang, Z., and Gao, L. (2019). Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism. Food Chem. 286:226–233.

[331]

Xu, S.,Liao, C.J.,Jaiswal, N.,Lee, S.,Yun, D.J.,Lee, S.Y.,Garvey, M.,Kaplan, I., and Mengiste, T. (2018). Tomato PEPR1 ORTHOLOG RECEPTOR-LIKE KINASE1 regulates responses to systemin, necrotrophic fungi, and insect herbivory. Plant Cell 30:2214–2229.

[332]

Xu, X.B., and Tian, S.P. (2008). Salicylic acid alleviated pathogen-induced oxidative stress in harvested sweet cherry fruit. Postharvest Biol. Technol. 49:379–385.

[333]

Xu, Z.,Dai, J.,Kang, T.,Shah, K.,Li, Q.,Liu, K.,Xing, L.,Ma, J.,Zhang, D., and Zhao, C. (2022). PpePL1 and PpePL15 are the core members of the pectate lyase gene family involved in peach fruit ripening and softening. Front. Plant Sci. 13:844055.

[334]

Yang, H.,Mei, W.,Wan, H.,Xu, R., and Cheng, Y. (2021a). Comprehensive analysis of KCS gene family in Citrinae reveals the involvement of CsKCS2 and CsKCS11 in fruit cuticular wax synthesis at ripening. Plant Sci. 310:110972.

[335]

Yang, H.,Zhu, Z.,Zhang, M.,Li, X.,Xu, R.,Zhu, F.,Xu, J.,Deng, X., and Cheng, Y. (2022a). CitWRKY28 and CitNAC029 promote the synthesis of cuticular wax by activating CitKCS gene expression in citrus fruit. Plant Cell Rep. 41:905–920.

[336]

Yang, H.,Zou, Y.,Li, X.,Zhang, M.,Zhu, Z.,Xu, R.,Xu, J.,Deng, X., and Cheng, Y. (2022b). QTL analysis reveals the effect of CER1-1 and CER1-3 to reduce fruit water loss by increasing cuticular wax alkanes in citrus fruit. Postharvest Biol. Technol. 185:111771.

[337]

Yang, H.S.F.,Wang, H.,Zhao, T.,Zhang, H.,Jiang, J.,Xu, X., and Li, J. (2020b). Functional analysis of the SlERF01 gene in disease resistance to S. lycopersici. BMC Plant Biol. 20:376.

[338]

Yang, H.S.Y.,Wang, H.,Zhao, T.,Xu, X.,Jiang, J., and Li, J. (2021b). Genome-wide identification and functional analysis of the ERF2 gene family in response to disease resistance against Stemphylium lycopersici in tomato. BMC Plant Biol. 21:72.

[339]

Yang, L.,Huang, W.,Xiong, F.,Xian, Z.,Su, D.,Ren, M., and Li, Z. (2017). Silencing of SlPL, which encodes a pectate lyase in tomato, confers enhanced fruit firmness, prolonged shelf-life and reduced susceptibility to grey mould. Plant Biotechnol. J. 15:1544–1555.

[340]

Yang, T.,Deng, L.,Wang, Q.,Sun, C.,Ali, M.,Wu, F.,Zhai, H.,Xu, Q.,Xin, P.,Cheng, S., et al. (2024). Tomato CYP94C1 inactivates bioactive JA-Ile to attenuate jasmonate-mediated defense during fruit ripening. Mol. Plant 17:509–512.

[341]

Yao, C.L.,Conway, W.S.,Ren, R.H.,Smith, D.,Ross, G.S., and Sams, C.E. (1999). Gene encoding polygalacturonase inhibitor in apple fruit is developmentally regulated and activated by wounding and fungal infection. Plant Mol. Biol. 39:1231–1241.

[342]

Yao, H., and Tian, S. (2005a). Effects of pre-and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biol. Technol. 35:253–262.

[343]

Yao, H.J., and Tian, S.P. (2005b). Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved. J. Appl. Microbiol. 98:941–950.

[344]

Yeats, T.H.,Martin, L.B.,Viart, H.M.,Isaacson, T.,He, Y.,Zhao, L.,Matas, A.J.,Buda, G.J.,Domozych, D.S.,Clausen, M.H., et al. (2012). The identification of cutin synthase: Formation of the plant polyester cutin. Nat. Chem. Biol. 8:609–611.

[345]

Yeats, T.H., and Rose, J.K. (2013). The formation and function of plant cuticles. Plant Physiol. 163:5–20.

[346]

Yin, Y.,Bi, Y.,Chen, S.,Li, Y.,Wang, Y.,Ge, Y.,Ding, B.,Li, Y., and Zhang, Z. (2011). Chemical composition and antifungal activity of cuticular wax isolated from Asian pear fruit (cv. Pingguoli). Sci. Hortic. 129:577–582.

[347]

Ying, S.,Su, M.,Wu, Y.,Zhou, L.,Fu, R.,Li, Y.,Guo, H.,Luo, J.,Wang, S., and Zhang, Y. (2020). Trichome regulator SlMIXTA-like directly manipulates primary metabolism in tomato fruit. Plant Biotechnol. J. 18:354–363.

[348]

You, S.,Wu, Y.,Li, W.,Liu, X.,Tang, Q.,Huang, F.,Li, Y.,Wang, H.,Liu, M., and Zhang, Y. (2023). SlERF.G3-Like mediates a hierarchical transcriptional cascade to regulate ripening and metabolic changes in tomato fruit. Plant Biotechnol. J. 22:165–180.

[349]

You, Y., and van Kan, J.A.L. (2021). Bitter and sweet make tomato hard to (b)eat. New Phytol. 230:90–100.

[350]

Youssef, S.M.,Amaya, I.,López-Aranda, J.M.,Sesmero, R.,Valpuesta, V.,Casadoro, G.,Blanco-Portales, R.,Pliego-Alfaro, F.,Quesada, M.A., and Mercado, J.A. (2012). Effect of simultaneous down-regulation of pectate lyase and endo-β-1, 4-glucanase genes on strawberry fruit softening. Mol. Breed. 31:313–322.

[351]

Youssef, S.M.,Jiménez-Bermúdez, S.,Bellido, M.L.,Martín-Pizarro, C.,Barceló M.,Abdal-Aziz, S.A.,Caballero, J.L.,López-Aranda, J.M.,Pliego-Alfaro, F.,Muñoz, J., et al. (2009). Fruit yield and quality of strawberry plants transformed with a fruit specific strawberry pectate lyase gene. Sci. Hortic. 119:120–125.

[352]

Yu, W.,Zhao, R.,Sheng, J., and Shen, L. (2018). SlERF2 is associated with methyl jasmonate-mediated defense response against Botrytis cinerea in tomato fruit. J. Agric. Food Chem. 66:9923–9932.

[353]

Yuan, M.,Jiang, Z.,Bi, G.,Nomura, K.,Liu, M.,Wang, Y.,Cai, B.,Zhou, J.M.,He, S.Y., and Xin, X.F. (2021). Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592:105–109.

[354]

Yuan, S.,Li, W.,Li, Q.,Wang, L.,Cao, J., and Jiang, W. (2019). Defense responses, induced by p-coumaric acid and methyl p-coumarate, of jujube (Ziziphus jujuba Mill.) fruit against black spot rot caused by Alternaria alternata. J. Agric. Food Chem. 67:2801–2810.

[355]

Zhai, Q.,Yan, C.,Li, L.,Xie, D., and Li, C. (2017). Jasmonates. In Hormone Metabolism and Signaling in Plants. pp. 243–272.

[356]

Zhang, C.L.,Hu, X.,Zhang, Y.L.,Liu, Y.,Wang, G.L.,You, C.X.,Li, Y.Y., and Hao, Y.J. (2020a). An apple long-chain acyl-CoA synthetase 2 gene enhances plant resistance to abiotic stress by regulating the accumulation of cuticular wax. Tree. Physiol. 40:1450–1465.

[357]

Zhang, C.L.,Zhang, Y.L.,Hu, X.,Xiao, X.,Wang, G.L.,You, C.X.,Li, Y.Y., and Hao, Y.J. (2020b). An apple long-chain acyl-CoA synthetase, MdLACS4, induces early flowering and enhances abiotic stress resistance in Arabidopsis. Plant Sci. 297:110529.

[358]

Zhang, F.,Yao, J.,Ke, J.,Zhang, L.,Lam, V.Q.,Xin, X.F.,Zhou, X.E.,Chen, J.,Brunzelle, J.,Griffin, P.R., et al. (2015). Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature 525:269–273.

[359]

Zhang, H.,Li, W.,Chen, J.,Yang, Y.,Zhang, Z.,Zhang, H.,Wang, X.C., and Huang, R. (2007). Transcriptional activator TSRF1 reversely regulates pathogen resistance and osmotic stress tolerance in tobacco. Plant Mol. Biol. 63:63–71.

[360]

Zhang, H.,Zhang, D.,Chen, J.,Yang, Y.,Huang, Z.,Huang, D.,Wang, X.C., and Huang, R. (2004). Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol. Biol. 55:825–834.

[361]

Zhang, L.,Zhu, M.,Ren, L.,Li, A.,Chen, G., and Hu, Z. (2018). The SlFSR gene controls fruit shelf-life in tomato. J. Exp. Bot. 69:2897–2909.

[362]

Zhang, M.,Koh, J.,Liu, L.,Shao, Z.,Liu, H.,Hu, S.,Zhu, N.,Dufresne, C.P.,Chen, S., and Wang, Q. (2016). Critical role of COI1-dependent jasmonate pathway in AAL toxin induced PCD in tomato revealed by comparative proteomics. Sci. Rep. 6:28451.

[363]

Zhang, M.,Leng, P.,Zhang, G., and Li, X. (2009a). Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. J. Plant Physiol. 166:1241–1252.

[364]

Zhang, M.,Yuan, B., and Leng, P. (2009b). The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J. Exp. Bot. 60:1579–1588.

[365]

Zhang, Q.,Wang, Y.,Wei, H.,Fan, W.,Xu, C., and Li, T. (2021a). CCR-NB-LRR proteins MdRNL2 and MdRNL6 interact physically to confer broad-spectrum fungal resistance in apple (Malus x domestica). Plant J. 108:1522–1538.

[366]

Zhang, W.W.,Zhao, S.Q.,Gu, S.,Cao, X.Y.,Zhang, Y.,Niu, J.F.,Liu, L.,Li, A.R.,Jia, W.S.,Qi, B.X., et al. (2022a). FvWRKY48 binds to the pectate lyase FvPLA promoter to control fruit softening in Fragaria vesca. Plant Physiol. 189:1037–1049.

[367]

Zhang, Y.,Butelli, E.,De Stefano, R.,Schoonbeek, H.J.,Magusin, A.,Pagliarani, C.,Wellner, N.,Hill, L.,Orzaez, D.,Granell, A., et al. (2013). Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold. Curr. Biol. 23:1094–1100.

[368]

Zhang, Y.,Chen, K.,Zhang, S., and Ferguson, I. (2003). The role of salicylic acid in postharvest ripening of kiwifruit. Postharvest Biol. Technol. 28:67–74.

[369]

Zhang, Y.,Guo, C.,Deng, M.,Li, S.,Chen, Y.,Gu, X.,Tang, G.,Lin, Y.,Wang, Y.,He, W., et al. (2022b). Genome-wide analysis of the ERF family and identification of potential genes involved in fruit ripening in octoploid strawberry. Int. J. Mol. Sci. 23:10550.

[370]

Zhang, Y.,Zhang, L.,Ma, H.,Zhang, Y.,Zhang, X.,Ji, M.,van Nocker, S.,Ahmad, B.,Zhao, Z.,Wang, X., et al. (2021b). Overexpression of the apple (Malus x domestica) MdERF100 in Arabidopsis increases resistance to powdery mildew. Int. J. Mol. Sci. 22:5713.

[371]

Zhang, Y.L.,Zhang, C.L.,Wang, G.L.,Wang, Y.X.,Qi, C.H.,Zhao, Q.,You, C.X.,Li, Y.Y., and Hao, Y.J. (2019). The R2R3 MYB transcription factor MdMYB30 modulates plant resistance against pathogens by regulating cuticular wax biosynthesis. BMC Plant Biol. 19:362.

[372]

Zhang, Z.Q.,Chen, T.,Li, B.Q.,Qin, G.Z., and Tian, S.P. (2021c). Molecular basis of pathogenesis of postharvest pathogenic fungi and control strategy in fruits: Progress and prospect. Mol. Hortic. 1:2.

[373]

Zhao, X.Y.,Qi, C.H.,Jiang, H.,Zhong, M.S.,You, C.X.,Li, Y.Y., and Hao, Y.J. (2019). MdHIR4 transcription and translation levels associated with disease in apple are regulated by MdWRKY31. Plant Mol. Biol. 101:149–162.

[374]

Zhao, X.Y.,Xue, Z.H.,Liu, Y.F.,Huang, Z.Y.,Sun, Y.J.,Wu, C.E.,Yan, S.J., and Kou, X.H. (2024). ChIP-seq revealed the role of tomato SNAC4 in response to biological and abiotic stresses and mediating auxin signaling response. Postharvest Biol. Technol. 209:112696.

[375]

Zheng, H.,Jin, R.,Liu, Z.,Sun, C.,Shi, Y.,Grierson, D.,Zhu, C.,Li, S.,Ferguson, I., and Chen, K. (2021). Role of the tomato fruit ripening regulator MADS-RIN in resistance to Botrytis cinerea infection. Food Qual. Saf. 5:fyab028.

[376]

Zhong, M.S.,Jiang, H.,Cao, Y.,Wang, Y.X.,You, C.X.,Li, Y.Y., and Hao, Y.J. (2020). MdCER2 conferred to wax accumulation and increased drought tolerance in plants. Plant Physiol. Biochem. 149:277–285.

[377]

Zhong, S.,Fei, Z.,Chen, Y.R.,Zheng, Y.,Huang, M.,Vrebalov, J.,McQuinn, R.,Gapper, N.,Liu, B.,Xiang, J., et al. (2013). Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat. Biotechnol. 31:154–159.

[378]

Zhou, L.,Gao, G.,Li, X.,Wang, W.,Tian, S., and Qin, G. (2023). The pivotal ripening gene SlDML2 participates in regulating disease resistance in tomato. Plant Biotechnol. J. 21:2291–2306.

[379]

Zhou, L.,Sun, Z.,Hu, T.,Chen, D.,Chen, X.,Zhang, Q.,Cao, J.,Zhu, B.,Fu, D.,Zhu, H., et al. (2024). Increasing flavonoid contents of tomato fruits through disruption of the SlSPL-CNR, a suppressor of SlMYB12 transcription activity. Plant Biotechnol. J. 22:290–292.

[380]

Zhou, J.,Tang, X., and Martin, G.B. (1997). The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J. 16:3207–3218.

[381]

Zhu, F.,Chen, J.,Xiao, X.,Zhang, M.,Yun, Z.,Zeng, Y.,Xu, J.,Cheng, Y., and Deng, X. (2016). Salicylic acid treatment reduces the rot of postharvest citrus fruit by inducing the accumulation of H2O2, primary metabolites and lipophilic polymethoxylated flavones. Food Chem. 207:68–74.

[382]

Zhu, M.,Ji, J.,Wang, M.,Zhao, M.,Yin, Y.,Kong, J.,Liu, M., and Li, Y.F. (2020). Cuticular wax of mandarin fruit promotes conidial germination and germ tube elongation, and impairs colony expansion of the green mold pathogen,Penicillium digitatum. Postharvest Biol. Technol. 169:111296.

[383]

Zhu, X.,Wang, A.,Zhu, S., and Zhang, L. (2011). Expression of ACO1, ERS1 and ERF1 genes in harvested bananas in relation to heat-induced defense against Colletotrichum musae. J. Plant Physiol. 168:1634–1640.

[384]

Zhu, Z.,Shi, J.,Xu, W.,Li, H.,He, M.,Xu, Y.,Xu, T.,Yang, Y.,Cao, J., and Wang, Y. (2013). Three ERF transcription factors from Chinese wild grapevine Vitis pseudoreticulata participate in different biotic and abiotic stress-responsive pathways. J. Plant Physiol. 170:923–933.

[385]

Zhu, Z., and Tian, S. (2012). Resistant responses of tomato fruit treated with exogenous methyl jasmonate to Botrytis cinerea infection. Sci. Hortic. 142:38–43.

[386]

Zou, J.,Chen, X.,Liu, C.,Guo, M.,Kanwar, M.K.,Qi, Z.,Yang, P.,Wang, G.,Bao, Y.,Bassham, D.C., et al. (2023). Autophagy promotes jasmonate-mediated defense against nematodes. Nat. Commun. 14:4769.

[387]

Zribi, I.,Ghorbel, M., and Brini, F. (2021). Pathogenesis related proteins (PRs): From cellular mechanisms to plant defense. Curr. Protein Pept. Sci. 22:396–412.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

190

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/