DNA methylation controlling abscisic acid catabolism responds to light to mediate strawberry fruit ripening

Yunfan Sun , Xiaofang Yang , Rongrong Wu , Shouzheng Lv , Yunduan Li , Haoran Jia , Yuying Yang , Baijun Li , Wenbo Chen , Andrew C. Allan , Guihua Jiang , Yan-Na Shi , Kunsong Chen

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (8) : 1718 -1734.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (8) : 1718 -1734. DOI: 10.1002/jipb.13681
Research Article

DNA methylation controlling abscisic acid catabolism responds to light to mediate strawberry fruit ripening

Author information +
History +
PDF

Abstract

Phytohormones, epigenetic regulation and environmental factors regulate fruit ripening but their interplay during strawberry fruit ripening remains to be determined. In this study, bagged strawberry fruit exhibited delayed ripening compared with fruit grown in normal light, correlating with reduced abscisic acid (ABA) accumulation. Transcription of the key ABA catabolism gene, ABA 8′-hydroxylase FaCYP707A4, was induced in bagged fruit. With light exclusion whole genome DNA methylation levels were up-regulated, corresponding to a delayed ripening process, while DNA methylation levels in the promoter of FaCYP707A4 were suppressed, correlating with increases in transcript and decreased ABA content. Experiments indicated FaCRY1, a blue light receptor repressed in bagged fruit and FaAGO4, a key protein involved in RNA-directed DNA methylation, could bind to the promoter of FaCYP707A4. The interaction between FaCRY1 and FaAGO4, and an increased enrichment of FaAGO4 directed to the FaCYP707A4 promoter in fruit grown under light suggests FaCRY1 may influence FaAGO4 to modulate the DNA methylation status of the FaCYP707A4 promoter. Furthermore, transient overexpression of FaCRY1, or an increase in FaCRY1 transcription by blue light treatment, increases the methylation level of the FaCYP707A4 promoter, while transient RNA interference of FaCRY1 displayed opposite phenotypes. These findings reveal a mechanism by which DNA methylation influences ABA catabolism, and participates in light-mediated strawberry ripening.

Keywords

ABA catabolism / DNA methylation / light / ripening / strawberry

Cite this article

Download citation ▾
Yunfan Sun, Xiaofang Yang, Rongrong Wu, Shouzheng Lv, Yunduan Li, Haoran Jia, Yuying Yang, Baijun Li, Wenbo Chen, Andrew C. Allan, Guihua Jiang, Yan-Na Shi, Kunsong Chen. DNA methylation controlling abscisic acid catabolism responds to light to mediate strawberry fruit ripening. Journal of Integrative Plant Biology, 2024, 66(8): 1718-1734 DOI:10.1002/jipb.13681

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akalin, A.,Kormaksson, M.,Li, S.,Garrett-Bakelman, F.E.,Figueroa, M.E.,Melnick, A., and Mason, C.E. (2012). methylKit: A comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 13: R87.

[2]

Axtell, M.J. (2013). ShortStack: Comprehensive annotation and quantification of small RNA genes. RNA 19:740–751.

[3]

Bolger, A.M.,Lohse, M., and Usadel, B. (2014). Trimmomatic:579 a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.

[4]

Bustamante, C.A.,Civello, P.M., and Martínez, G.A. (2009). Cloning of the promoter region of β-xylosidase (FaXyl1) gene and effect of plant growth regulators on the expression of FaXyl1 in strawberry fruit. Plant Sci. 177:49–56.

[5]

Chang, S.,Puryear, J., and Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11:113–116.

[6]

Chen, H.,Zhang, J.,Neff, M.M.,Hong, S.-W.,Zhang, H.,Deng, X.-W., and Xiong, L. (2008). Integration of light and abscisic acid signaling during seed germination and early seedling development. Proc. Natl. Acad. Sci. U.S.A. 105:4495–4500.

[7]

Chen, S.,Zhou, Y.,Chen, Y., and Gu, J. (2018). fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: i884–i890.

[8]

Cheng, J.,Niu, Q.,Zhang, B.,Chen, K.,Yang, R.,Zhu, J.K.,Zhang, Y., and Lang, Z. (2018). Downregulation of RdDM during strawberry fruit ripening. Genome Biol. 19:212.

[9]

Cruz, A.B.,Bianchetti, R.E.,Alves, F.R.R.,Purgatto, E.,Peres, L.E.P.,Rossi, M., and Freschi, L. (2018). Light, ethylene and auxin signaling interaction regulates carotenoid biosynthesis during tomato fruit ripening. Front. Plant Sci. 9:1370.

[10]

Ding, Y.,Avramova, Z., and Fromm, M. (2011). The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. Plant J. 66:735–744.

[11]

Edger, P.P.,Poorten, T.J.,VanBuren, R.,Hardigan, M.A.,Colle, M.,McKain, M.R.,Smith, R.D.,Teresi, S.J.,Nelson, A.D.L.,Wai, C.M., et al. (2019). Origin and evolution of the octoploid strawberry genome. Nat. Genet. 51:541–547.

[12]

Fantini, E.,Sulli, M.,Zhang, L.,Aprea, G.,Jiménez-Gómez, J.M.,Bendahmane, A.,Perrotta, G.,Giuliano, G., and Facella, P. (2019). Pivotal roles of cryptochromes 1a and 2 in tomato development and physiology. Plant Physiol. 179:732–748.

[13]

Fenn, M.A., and Giovannoni, J.J. (2021). Phytohormones in fruit development and maturation. Plant J. 105:446–458.

[14]

Giovannoni, J.,Nguyen, C.,Ampofo, B.,Zhong, S., and Fei, Z. (2017). The epigenome and transcriptional dynamics of fruit ripening. Annu. Rev. Plant Biol. 68:61–84.

[15]

Giovannoni, J.J. (2004). Genetic regulation of fruit development and ripening. Plant Cell 16: S170–S180.

[16]

Greb, T.,Mylne, J.S.,Crevillen, P.,Geraldo, N.,An, H.,Gendall, A.R., and Dean, C. (2007). The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC. Curr. Biol. 17:73–78.

[17]

Gruntman, E.,Qi, Y.,Slotkin, R.K.,Roeder, T.,Martienssen, R.A., and Sachidanandam, R. (2008). Kismeth: Analyzer of plant methylation states through bisulfite sequencing. BMC Bioinf. 9:371.

[18]

Gu, T.,Jia, S.,Huang, X.,Wang, L.,Fu, W.,Huo, G.,Gan, L.,Ding, J., and Li, Y. (2019). Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening. Planta 250:145–162.

[19]

Gupta, K.,Wani, S.H.,Razzaq, A.,Skalicky, M.,Samantara, K.,Gupta, S.,Pandita, D.,Goel, S.,Grewal, S.,Hejnak, V., et al. (2022). Abscisic acid: Role in fruit development and ripening. Front. Plant Sci. 13:817500.

[20]

Hetzl, J.,Foerster, A.M.,Raidl, G., and Scheid, O.M. (2007). CyMATE: A new tool for methylation analysis of plant genomic DNA after bisulphite sequencing. Plant J. 51:526–536.

[21]

Huang, H.,Liu, R.,Niu, Q.,Tang, K.,Zhang, B.,Zhang, H.,Chen, K.,Zhu, J.K., and Lang, Z. (2019). Global increase in DNA methylation during orange fruit development and ripening. Proc. Natl. Acad. Sci. U.S.A. 116:1430–1436.

[22]

Ji, K.,Kai, W.,Zhao, B.,Sun, Y.,Yuan, B.,Dai, S.,Li, Q.,Chen, P.,Wang, Y.,Pei, Y., et al. (2014). SlNCED1 and SlCYP707A2: Key genes involved in ABA metabolism during tomato fruit ripening. J. Exp. Bot. 65:5243–5255.

[23]

Jia, H.F.,Chai, Y.M.,Li, C.L.,Lu, D.,Luo, J.J.,Qin, L., and Shen, Y.Y. (2011). Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol. 157:188–199.

[24]

Jiang, A.,Zheng, L.,Wang, D.,Kang, C.,Wu, J.,Fang, P.,Cao, J., and Sun, C. (2022). Effects of fruit bagging on the physiochemical changes of grapefruit (Citrus paradisi). Food Qual. Saf. 6.

[25]

Jiang, J.,Liu, J.,Sanders, D.,Qian, S.,Ren, W.,Song, J.,Liu, F., and Zhong, X. (2021). UVR8 interacts with de novo DNA methyltransferase and suppresses DNA methylation in Arabidopsis. Nat. Plants 7:184–197.

[26]

Kadomura-Ishikawa, Y.,Miyawaki, K.,Noji, S., and Takahashi, A. (2013). Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria x ananassa fruits. J. Plant Res. 126:847–857.

[27]

Kadomura-Ishikawa, Y.,Miyawaki, K.,Takahashi, A.,Masuda, T., and Noji, S. (2015). Light and abscisic acid independently regulated FaMYB10 in Fragaria× Ananassa fruit. Planta 241:953–965.

[28]

Kilambi, H.V.,Kumar, R.,Sharma, R., and Sreelakshmi, Y. (2013). Chromoplast-specific carotenoid-associated protein appears to be important for enhanced accumulation of carotenoids in hp1 tomato fruits. Plant Physiol. 161:2085–2101.

[29]

Kiontke, S.,Gobel, T.,Brych, A., and Batschauer, A. (2020). DASH-type cryptochromes—Solved and open questions. Biol. Chem. 401:1487–1493.

[30]

Krueger, F., and Andrews, S.R. (2011). Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27:1571–1572.

[31]

Lang, Z.,Wang, Y.,Tang, K.,Tang, D.,Datsenka, T.,Cheng, J.,Zhang, Y.,Handa, A.K., and Zhu, J.K. (2017). Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proc. Natl. Acad. Sci. U.S.A. 114: E4511–E4519.

[32]

Lee, H.J.,Jung, J.H.,Cortés Llorca, L.,Kim, S.G.,Lee, S.,Baldwin, I.T., and Park, C.M. (2014). FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nat. Commun. 5:5473.

[33]

Lei, M.,Zhang, H.,Julian, R.,Tang, K.,Xie, S., and Zhu, J.K. (2015). Regulatory link between DNA methylation and active demethylation in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 112:3553–3557.

[34]

Li, B., and Dewey, C.N. (2011). RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323.

[35]

Li, B.,Grierson, D.,Shi, Y., and Chen, K. (2022a). Roles of abscisic acid in regulating ripening and quality of strawberry, a model non-climacteric fruit. Hortic. Res. 9: uhac089.

[36]

Li, B.,Shi, Y.,Jia, H.,Yang, X.,Sun, Y.,Lu, J.,Giovannoni, J.J.,Jiang, G.,Rose, J.K.C., and Chen, K. (2023a). Abscisic acid mediated strawberry receptacle ripening involves the interplay of multiple phytohormone signaling networks. Front. Plant Sci. 14:1117156.

[37]

Li, S.-J.,Yin, X.-R.,Wang, W.-L.,Liu, X.-F.,Zhang, B., and Chen, K.-S. (2017). Citrus CitNAC62 cooperates with CitWRKY1 to participate in citric acid degradation via up-regulation of CitAco3. J. Exp. Bot. 68:3419–3426.

[38]

Li, Y.,Shi, Y.,Li, Y.,Lu, J.,Sun, Y.,Zhang, Y.,Chen, W.,Yang, X.,Grierson, D.,Lang, Z., et al. (2023b). DNA methylation mediated by RdDM pathway and demethylation affects furanone accumulation through regulation of QUINONE OXIDOREDUCTASE in strawberry. Hortic. Res. 10: uhad131.

[39]

Li, Z.,Luo, X.,Wang, L., and Shu, K. (2022b). ABI5 mediates light-ABA/GA crosstalk networks during seed germination. J. Exp. Bot. 73:4674–4682.

[40]

Liang, T.,Mei, S.,Shi, C.,Yang, Y.,Peng, Y.,Ma, L.,Wang, F.,Li, X.,Huang, X.,Yin, Y., et al. (2018). UVR8 interacts with BES1 and BIM1 to regulate transcription and photomorphogenesis in Arabidopsis. Dev. Cell 44:512–523.

[41]

Liao, X.,Li, M.,Liu, B.,Yan, M.,Yu, X.,Zi, H.,Liu, R., and Yamamuro, C. (2018). Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry. Proc. Natl. Acad. Sci. U.S.A. 115: E11542–E11550.

[42]

Lin-Wang, K.,Bolitho, K.,Grafton, K.,Kortstee, A.,Karunairetnam, S.,McGhie, T.K.,Espley, R.V.,Hellens, R.P., and Allan, A.C. (2010). An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol. 10:50.

[43]

Liu, H.,Su, J.,Zhu, Y.,Yao, G.,Allan, A.C.,Ampomah-Dwamena, C.,Shu, Q.,Lin-Wang, K.,Zhang, S., and Wu, J. (2019). The involvement of PybZIPa in light-induced anthocyanin accumulation via the activation of PyUFGT through binding to tandem G-boxes in its promoter. Hortic. Res. 6:134.

[44]

Liu, H.,Yang, X.,Liao, X.,Zuo, T.,Qin, C.,Cao, S.,Dong, L.,Zhou, H.,Zhang, Y.,Liu, S., et al. (2015a). Genome-wide comparative analysis of digital gene expression tag profiles during maize ear development. Genomics 106:52–60.

[45]

Liu, M.,Pirrello, J.,Chervin, C.,Roustan, J.P., and Bouzayen, M. (2015b). Ethylene control of fruit ripening: Revisiting the complex network of transcriptional regulation. Plant Physiol. 169:2380–2390.

[46]

Liu, S.,Liu, X.,Gou, B.,Wang, D.,Liu, C.,Sun, J.,Yin, X.,Grierson, D.,Li, S., and Chen, K. (2022). The interaction between CitMYB52 and CitbHLH2 negatively regulates citrate accumulation by activating CitALMT in citrus fruit. Front. Plant Sci. 13:848869.

[47]

Lu, P.,Yu, S.,Zhu, N.,Chen, Y.R.,Zhou, B.,Pan, Y.,Tzeng, D.,Fabi, J.P.,Argyris, J.,Garcia-Mas, J., et al. (2018). Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nat. Plants 4:784–791.

[48]

Lv, J.,Zheng, T.,Song, Z.,Pervaiz, T.,Dong, T.,Zhang, Y.,Jia, H., and Fang, J. (2022). Strawberry proteome responses to controlled hot and cold stress partly mimic post-harvest storage temperature effects on fruit quality. Front. Nutr. 8:812666.

[49]

Mao, Z.,He, S.,Xu, F.,Wei, X.,Jiang, L.,Liu, Y.,Wang, W.,Li, T.,Xu, P.,Du, S., et al. (2020). Photoexcited CRY1 and phyB interact directly with ARF6 and ARF8 to regulate their DNA-binding activity and auxin-induced hypocotyl elongation in Arabidopsis. New Phytol. 225:848–865.

[50]

Mworia, E.G.,Yoshikawa, T.,Salikon, N.,Oda, C.,Asiche, W.O.,Yokotani, N.,Abe, D.,Ushijima, K.,Nakano, R., and Kubo, Y. (2012). Low-temperature-modulated fruit ripening is independent of ethylene in “Sanuki Gold” kiwifruit. J. Exp. Bot. 63:963–971.

[51]

Nardi, C.F.,Villarreal, N.M.,Dotto, M.C.,Ariza, M.T.,Vallarino, J.G.,Martinez, G.A.,Valpuesta, V., and Civello, P.M. (2016). Influence of plant growth regulators on Expansin2 expression in strawberry fruit. Cloning and functional analysis of FaEXP2 promoter region. Postharvest Biol. Technol. 114:17–28.

[52]

Opazo, M.C.,Lizana, R.,Pimentel, P.,Herrera, R., and Moya-León, M.A. (2013). Changes in the mRNA abundance of FcXTH1 and FcXTH2 promoted by hormonal treatments of Fragaria chiloensis fruit. Postharvest Biol. Technol. 77:28–34.

[53]

Ozcelik, G.,Koca, M.S.,Sunbul, B.,Yilmaz-Atay, F.,Demirhan, F.,Tiryaki, B.,Cilenk, K.,Selvi, S., and Ozturk, N. (2024). Interactions of drosophila cryptochrome. Photochem. Photobiol. 1–20.

[54]

Pedmale, U.V.,Huang, S.C.,Zander, M.,Cole, B.J.,Hetzel, J.,Ljung, K.,Reis, P.A.B.,Sridevi, P.,Nito, K.,Nery, J.R., et al. (2016). Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell 164:233–245.

[55]

Ponnu, J., and Hoecker, U. (2022). Signaling mechanisms by Arabidopsis cryptochromes. Front. Plant Sci. 13:844714.

[56]

Porebski, S.,Bailey, L.G., and Baum, B.R. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15:8–15.

[57]

Raab, T.,López-Ráez, J.A.,Klein, D.,Caballero, J.L.,Moyano, E.,Schwab, W., and Muñoz-Blanco, J. (2006). FaQR, required for the biosynthesis of the strawberry flavor compound 4-hydroxy-2, 5-dimethyl-3(2H)-furanone, encodes an enone oxidoreductase. Plant Cell 18:1023–1037.

[58]

Ren, Y.B.,Li, B.J.,Jia, H.R.,Yang, X.F.,Sun, Y.F.,Shou, J.H.,Jiang, G.H.,Shi, Y.N., and Chen, K.S. (2023). Comparative analysis of fruit firmness and genes associated with cell wall metabolisms in three cultivated strawberries during ripening and postharvest. Food Qual. Saf. fyad020.

[59]

Samkumar, A.,Jones, D.,Karppinen, K.,Dare, A.P.,Sipari, N.,Espley, R.V.,Martinussen, I., and Jaakola, L. (2021). Red and blue light treatments of ripening bilberry fruits reveal differences in signalling through abscisic acid-regulated anthocyanin biosynthesis. Plant Cell Environ. 44:3227–3245.

[60]

Selby, C.P., and Sancar, A. (2006). A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc. Natl. Acad. Sci. 103:17696–17700.

[61]

Seymour, G.,Poole, M.,Manning, K., and King, G.J. (2008). Genetics and epigenetics of fruit development and ripening. Curr. Opin. Plant Biol. 11:58–63.

[62]

Tao, R.,Bai, S.,Ni, J.,Yang, Q.,Zhao, Y., and Teng, Y. (2018). The blue light signal transduction pathway is involved in anthocyanin accumulation in “Red Zaosu” pear. Planta 248:37–48.

[63]

Teyssier, E.,Boureauv, L.,Chen, W.,Lui, R.,Degraeve-Guibault, C.,Stammitti, L.,Hong, Y.,Gallusci, P. (2015). 8—Epigenetic regulation during fleshy fruit development and ripening. In Applied Plant Genomics and Biotechnology. (Oxford: Woodhead Publishing), pp. 133–151.

[64]

Wang, A.,Chen, D.,Ma, Q.,Rose, J.K.C.,Fei, Z.,Liu, Y., and Giovannoni, J.J. (2019). The tomato HIGH PIGMENT1/DAMAGED DNA BINDING PROTEIN 1 gene contributes to regulation of fruit ripening. Hortic. Res. 6:15.

[65]

Wang, W.,Wang, P.,Li, X.,Wang, Y.,Tian, S., and Qin, G. (2021a). The transcription factor SlHY5 regulates the ripening of tomato fruit at both the transcriptional and translational levels. Hortic. Res. 8:83.

[66]

Wang, X.,Jiang, B.,Gu, L.,Chen, Y.,Mora, M.,Zhu, M.,Noory, E.,Wang, Q., and Lin, C. (2021b). A photoregulatory mechanism of the circadian clock in Arabidopsis. Nat. Plants 7:1397–1408.

[67]

Wei, W.,Chen, J.Y.,Zeng, Z.X.,Kuang, J.F.,Lu, W.J., and Shan, W. (2020). The ubiquitin E3 ligase MaLUL2 is involved in high temperature-induced green ripening in banana fruit. Int. J. Mol. Sci. 21:9386.

[68]

Wein, M.,Lavid, N.,Lunkenbein, S.,Lewinsohn, E.,Schwab, W., and Kaldenhoff, R. (2002). Isolation, cloning and expression of a multifunctional O-methyltransferase capable of forming 2, 5-dimethyl-4-methoxy-3(2H)-furanone, one of the key aroma compounds in strawberry fruits. Plant J. 31:755–765.

[69]

Xiang, L.,Liu, X.,Li, H.,Yin, X.,Grierson, D.,Li, F., and Chen, K. (2019). CmMYB#7, an R3 MYB transcription factor, acts as a negative regulator of anthocyanin biosynthesis in chrysanthemum. J. Exp. Bot. 70:3111–3123.

[70]

Xu, D.,Wu, D.,Li, X.H.,Jiang, Y.,Tian, T.,Chen, Q.,Ma, L.,Wang, H.,Deng, X.W., and Li, G. (2020). Light and abscisic acid coordinately regulate greening of seedlings. Plant Physiol. 183:1281–1294.

[71]

Xu, F.,Cao, S.,Shi, L.,Chen, W.,Su, X., and Yang, Z. (2014). Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit. J. Agric. Food Chem. 62:4778–4783.

[72]

Xu, P.,Chen, H.,Li, T.,Xu, F.,Mao, Z.,Cao, X.,Miao, L.,Du, S.,Hua, J.,Zhao, J., et al. (2021). Blue light-dependent interactions of CRY1 with GID1 and DELLA proteins regulate gibberellin signaling and photomorphogenesis in Arabidopsis. Plant Cell 33:2375–2394.

[73]

Xu, P.,Zawora, C.,Li, Y.,Wu, J.,Liu, L.,Liu, Z.,Cai, R., and Lian, H. (2018). Transcriptome sequencing reveals role of light in promoting anthocyanin accumulation of strawberry fruit. Plant Growth Regul. 86:121–132.

[74]

Yan, J.,Ma, C.,Bo, C.,Fan, X.,Li, Z.,Yang, Y., and Zhao, Z. (2018). A modified CTAB method for genomic DNA extraction from apple fruit. Mol. Plant. Breed. 9:36–43.

[75]

Yadukrishnan, P., and Datta, S. (2021). Light and abscisic acid interplay in early seedling development. New Phytol. 229:763–769.

[76]

Yang, L.,Mo, W.,Yu, X.,Yao, N.,Zhou, Z.,Fan, X.,Zhang, L.,Piao, M.,Li, S.,Yang, D., et al. (2018). Reconstituting Arabidopsis CRY2 signaling pathway in mammalian cells reveals regulation of transcription by direct binding of CRY2 to DNA. Cell Rep. 24:585–593.

[77]

Yang, T.,Ma, H.,Li, Y.,Zhang, Y.,Zhang, J.,Wu, T.,Song, T.,Yao, Y., and Tian, J. (2021). Apple MPK4 mediates phosphorylation of MYB1 to enhance light-induced anthocyanin accumulation. Plant J. 106:1728–1745.

[78]

Zhang, B.,Tieman, D.M.,Jiao, C.,Xu, Y.,Chen, K.,Fei, Z.,Giovannoni, J.J., and Klee, H.J. (2016). Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation. Proc. Natl. Acad. Sci. U.S.A. 113:12580–12585.

[79]

Zhang, J.,Zhang, Y.,Song, S.,Su, W.,Hao, Y., and Liu, H. (2020). Supplementary Red light results in the earlier ripening of tomato fruit depending on ethylene production. Environ. Exp. Bot. 175:104044.

[80]

Zhang, M.,Du, T.,Yin, Y.,Cao, H.,Song, Z.,Ye, M.,Liu, Y.,Shen, Y.,Zhang, L.,Yang, Q., et al. (2022). Synergistic effects of plant hormones on spontaneous late-ripening mutant of “Jinghong” peach detected by transcriptome analysis. Food Qual. Saf. 6.

[81]

Zhang, Y.,Jiang, L.,Li, Y.,Chen, Q.,Ye, Y.,Zhang, Y.,Luo, Y.,Sun, B.,Wang, X., and Tang, H. (2018a). Effect of red and blue light on anthocyanin accumulation and differential gene expression in strawberry (Fragaria x ananassa). Molecules 23:820.

[82]

Zhang, Y.,Yin, X.,Xiao, Y.,Zhang, Z.,Li, S.,Liu, X.,Zhang, B.,Yang, X.,Grierson, D.,Jiang, G., et al. (2018b). An ETHYLENE RESPONSE FACTOR-MYB transcription complex regulates furaneol biosynthesis by activating QUINONE OXIDOREDUCTASE expression in strawberry. Plant Physiol. 178:189–201.

[83]

Zhang, Z.,Shi, Y.,Ma, Y.,Yang, X.,Yin, X.,Zhang, Y.,Xiao, Y.,Liu, W.,Li, Y.,Li, S., et al. (2020). The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of FaMYB10 and anthocyanin pathway genes. Plant Biotechnol. J. 18:2267–2279.

[84]

Zhao, Y.,Dong, W.,Wang, K.,Zhang, B.,Allan, A.C.,Lin-Wang, K.,Chen, K., and Xu, C. (2017). Differential sensitivity of fruit pigmentation to ultraviolet light between two peach cultivars. Front. Plant Sci. 8:1552.

[85]

Zhong, M.,Zeng, B.,Tang, D.,Yang, J.,Qu, L.,Yan, J.,Wang, X.,Li, X.,Liu, X., and Zhao, X. (2021). The blue light receptor CRY1 interacts with GID1 and DELLA proteins to repress GA signaling during photomorphogenesis in Arabidopsis. Mol. Plant 14:1328–1342.

[86]

Zhou, L.,Tang, R.,Li, X.,Tian, S.,Li, B., and Qin, G. (2021). N(6)-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner. Genome Biol. 22:168.

[87]

Zhu, Y.C.,Zhang, B.,Allan, A.C.,Lin-Wang, K.,Zhao, Y.,Wang, K.,Chen, K.S., and Xu, C.J. (2020). DNA demethylation is involved in the regulation of temperature-dependent anthocyanin accumulation in peach. Plant J. 102:965–976.

[88]

Zorrilla-Fontanesi, Y.,Rambla, J.-L.,Cabeza, A.,Medina, J.J.,Sánchez-Sevilla, J.F.,Valpuesta, V.,Botella, M.A.,Granell, A., and Amaya, I. (2012). Genetic analysis of strawberry fruit aroma and identification of O-Methyltransferase FaOMT as the locus controlling natural variation in mesifurane content. Plant Physiol. 159:851–870.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/