IL-32γ Plays a Neuroprotective Role after Acute Stroke in Middle Cerebral Artery Occlusion Mouse Model

Jaewoo Hong , Suyoung Bae , Yasmin Hisham , Taewon Han , Hyunjung Jhun

Journal of Inflammatory and Infectious Medicine ›› 2025, Vol. 1 ›› Issue (2) : 3

PDF (1082KB)
Journal of Inflammatory and Infectious Medicine ›› 2025, Vol. 1 ›› Issue (2) :3 DOI: 10.53941/jiim.2025.100009
Article
research-article

IL-32γ Plays a Neuroprotective Role after Acute Stroke in Middle Cerebral Artery Occlusion Mouse Model

Author information +
History +
PDF (1082KB)

Abstract

Stroke is the second leading cause of death and a major cause of long-term disability worldwide. Within minutes of onset, cerebral ischemia triggers a cascade of pathophysiological events that ultimately result in irreversible tissue damage. Post-ischemic inflammation plays a critical role in cerebral ischemia-reperfusion injury, characterized by the elevated release of cytokines and chemokines. Interleukin (IL)-32 is known to induce several cytokines, particularly pro-inflammatory ones such as IL-6, tumor necrosis factor (TNF)-α, and IL-1β. Targeting inflammatory pathways are of great interest in stroke research. In this study, we investigated the role of IL-32γ in a middle cerebral artery occlusion (MCAO) model using transgenic (TG) mice expressing human IL-32γ. Compared to wild-type (WT) mice, IL-32γ TG mice exhibited a significantly reduced infarct volume after MCAO. Accompanying the decreased brain tissue damage, the levels of pro-inflammatory cytokines IL-6, TNF-α, and IL-1β were markedly lower in IL-32γ TG mice than in WT controls. These findings suggest that IL-32γ attenuates the inflammatory response in ischemic brain injury. Specifically, IL-32γ reduced the expression of pro-inflammatory cytokines and the number of apoptotic cells following ischemic insult. In conclusion, our results demonstrate that IL-32γ protects the neuroinflammatory response in brain injury and may serve as a potential neuroprotective therapeutic target.

Keywords

stroke / IL-32γ / proinflammatory cytokine / IL-32γ TG / middle cerebral artery occlusion

Cite this article

Download citation ▾
Jaewoo Hong, Suyoung Bae, Yasmin Hisham, Taewon Han, Hyunjung Jhun. IL-32γ Plays a Neuroprotective Role after Acute Stroke in Middle Cerebral Artery Occlusion Mouse Model. Journal of Inflammatory and Infectious Medicine, 2025, 1(2): 3 DOI:10.53941/jiim.2025.100009

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Virani S.S.; Alonso A.; Aparicio H.J.; Benjamin E.J.; Bittencourt M.S.; Callaway C.W.; Carson A.P.; Chamberlain A.M.; Cheng S.; Delling F.N.; et al. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021, 143, e254-e743. https://doi.org/10.1161/CIR.0000000000000950.

[2]

Katan M.; Luft A. Global Burden of Stroke. Semin. Neurol. 2018, 38, 208-211. https://doi.org/10.1055/s-0038-1649503.

[3]

Sveinsson O.A.; Kjartansson O.; Valdimarsson E.M. Cerebral ischemia/infarction—Epidemiology, causes and symptoms. Laeknabladid 2014, 100, 271-279. https://doi.org/10.17992/lbl.2014.05.543.

[4]

Orellana-Urzua S.; Rojas I.; Libano L.; Rodrigo R. Pathophysiology of Ischemic Stroke: Role of Oxidative Stress. Curr. Pharm. Des. 2020, 26, 4246-4260. https://doi.org/10.2174/1381612826666200708133912.

[5]

Huang J.; Upadhyay U.M.; Tamargo R.J. Inflammation in stroke and focal cerebral ischemia. Surg. Neurol. 2006, 66, 232-245. https://doi.org/10.1016/j.surneu.2005.12.028.

[6]

Shi K.; Tian D.C.; Li Z.G.; Ducruet A.F.; Lawton M.T.; Shi F.D. Global brain inflammation in stroke. Lancet Neurol. 2019, 18, 1058-1066. https://doi.org/10.1016/S1474-4422(19)30078-X.

[7]

Jin R.; Liu L.; Zhang S.; Nanda A.; Li G. Role of inflammation and its mediators in acute ischemic stroke. J. Cardiovasc. Transl. Res. 2013, 6, 834-851. https://doi.org/10.1007/s12265-013-9508-6.

[8]

Kim E.; Cho S. Microglia and Monocyte-Derived Macrophages in Stroke. Neurotherapeutics 2016, 13, 702-718. https://doi.org/10.1007/s13311-016-0463-1.

[9]

Drieu A.; Buendia I.; Levard D.; Helie P.; Brodin C.; Vivien D.; Rubio M. Immune Responses and Anti-inflammatory Strategies in a Clinically Relevant Model of Thromboembolic Ischemic Stroke with Reperfusion. Transl. Stroke Res. 2020, 11, 481-495. https://doi.org/10.1007/s12975-019-00733-8.

[10]

Drieu A.; Levard D.; Vivien D.; Rubio M. Anti-inflammatory treatments for stroke: From bench to bedside. Ther. Adv. Neurol. Disord. 2018, 11. https://doi.org/10.1177/1756286418789854.

[11]

Heinz R.; Brandenburg S.; Nieminen-Kelha M.; Kremenetskaia I.; Boehm-Sturm P.; Vajkoczy P.; Schneider U.C. Microglia as target for anti-inflammatory approaches to prevent secondary brain injury after subarachnoid hemorrhage (SAH). J. Neuroinflamm. 2021, 18, 36. https://doi.org/10.1186/s12974-021-02085-3.

[12]

Choi J.; Bae S.; Hong J.; Ryoo S.; Jhun H.; Hong K.; Yoon D.; Lee S.; Her E.; Choi W.; et al. Paradoxical effects of constitutive human IL-32{gamma} in transgenic mice during experimental colitis. Proc. Natl. Acad. Sci. USA 2010, 107, 21082-21086. https://doi.org/10.1073/pnas.1015418107.

[13]

Joosten L.A.; Netea M.G.; Kim S.H.; Yoon D.Y.; Oppers-Walgreen B.; Radstake T.R.; Barrera P.; van de Loo F.A.; Dinarello C.A.; van den Berg W.B. IL-32, a proinflammatory cytokine in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 2006, 103, 3298-3303.

[14]

Shioya M.; Nishida A.; Yagi Y.; Ogawa A.; Tsujikawa T.; Kim-Mitsuyama S.; Takayanagi A.; Shimizu N.; Fujiyama Y.; Andoh A. Epithelial overexpression of interleukin-32alpha in inflammatory bowel disease. Clin. Exp. Immunol. 2007, 149, 480-486. https://doi.org/10.1111/j.1365-2249.2007.03439.x.

[15]

Calabrese F.; Baraldo S.; Bazzan E.; Lunardi F.; Rea F.; Maestrelli P.; Turato G.; Lokar-Oliani K.; Papi A.; Zuin R.; et al. IL-32, a novel proinflammatory cytokine in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2008, 178, 894-901. https://doi.org/10.1164/rccm.200804-646OC.

[16]

Dinarello C.A.; Kim S.H. IL-32, a novel cytokine with a possible role in disease. Ann. Rheum. Dis. 2006, 65 (Suppl. 3), 61-64.

[17]

Hong J.T.; Son D.J.; Lee C.K.; Yoon D.Y.; Lee D.H.; Park M.H. Interleukin 32, inflammation and cancer. Pharmacol. Ther. 2017, 174, 127-137. https://doi.org/10.1016/j.pharmthera.2017.02.025.

[18]

Gong L.; Dong C.; Cai Q.; Ouyang W.Interleukin 32: A novel player in perioperative neurocognitive disorders. Med. Hypotheses. 2020, 144, 110158. https://doi.org/10.1016/j.mehy.2020.110158.

[19]

Safari-Alighiarloo N.; Taghizadeh M.; Mohammad Tabatabaei S.; Namaki S.; Rezaei-Tavirani M. Identification of common key genes and pathways between type 1 diabetes and multiple sclerosis using transcriptome and interactome analysis. Endocrine 2020, 68, 81-92. https://doi.org/10.1007/s12020-019-02181-8.

[20]

Hamzaoui K.; Borhani-Haghighi A.; Dhifallah I.B.; Hamzaoui A. Elevated levels of IL-32 in cerebrospinal fluid of neuro-Behcet disease: Correlation with NLRP3 inflammasome. J. Neuroimmunol. 2022, 365, 577820. https://doi.org/10.1016/j.jneuroim.2022.577820.

[21]

Cho K.S.; Park S.H.; Joo S.H.; Kim S.H.; Shin C.Y. The effects of IL-32 on the inflammatory activation of cultured rat primary astrocytes. Biochem. Biophys. Res. Commun. 2010, 402, 48-53. https://doi.org/10.1016/j.bbrc.2010.09.099.

[22]

Sohn D.H.; Nguyen T.T.; Kim S.; Shim S.; Lee S.; Lee Y.; Jhun H.; Azam T.; Kim J.; Kim S.Structural Characteristics of Seven IL-32 Variants. Immune Netw. 2019, 19, e8.

[23]

Kim S.; Yu H.; Azam T.; Dinarello C.A. Interleukin-18 Binding Protein (IL-18BP): A Long Journey From Discovery to Clinical Application. Immune Netw. 2024, 24, e1.

[24]

Hua F.; Ma J.; Ha T.; Kelley J.; Williams D.L.; Kao R.L.; Kalbfleisch J.H.; Browder I.W.; Li C. Preconditioning with a TLR2 specific ligand increases resistance to cerebral ischemia/reperfusion injury. J. Neuroimmunol. 2008, 199, 75-82. https://doi.org/10.1016/j.jneuroim.2008.05.009.

[25]

Chen Y.; Ito A.; Takai K.; Saito N. Blocking pterygopalatine arterial blood flow decreases infarct volume variability in a mouse model of intraluminal suture middle cerebral artery occlusion. J. Neurosci. Methods 2008, 174, 18-24. https://doi.org/10.1016/j.jneumeth.2008.06.021.

[26]

Reglodi D.; Tamas A.; Somogyvari-Vigh A.; Szanto Z.; Kertes E.; Lenard L.; Arimura A.; Lengvari I. Effects of pretreatment with PACAP on the infarct size and functional outcome in rat permanent focal cerebral ischemia. Peptides 2002, 23, 2227-2234.

[27]

Hatcher J.P.; Virley D.; Hadingham S.J.; Roberts J.; Hunter A.J.; Parsons A.A. The behavioural effect of middle cerebral artery occlusion on apolipoprotein-E deficient mice. Behav. Brain Res. 2002, 131, 139-149.

[28]

Nurmi A.; Lindsberg P.J.; Koistinaho M.; Zhang W.; Juettler E.; Karjalainen-Lindsberg M.L.; Weih F.; Frank N.; Schwaninger M.; Koistinaho J. Nuclear factor-kappaB contributes to infarction after permanent focal ischemia. Stroke 2004, 35, 987-991. https://doi.org/10.1161/01.STR.0000120732.45951.26.

[29]

Howell J.A.; Bidwell G.L., 3rd. Targeting the NF-kappaB pathway for therapy of ischemic stroke. Ther. Deliv. 2020, 11, 113-123. https://doi.org/10.4155/tde-2019-0075.

[30]

Ginsberg M.D.; Busto R. Rodent models of cerebral ischemia. Stroke 1989, 20, 1627-1642. https://doi.org/10.1161/01.str.20.12.1627.

[31]

Kim S.H.; Han S.Y.; Azam T.; Yoon D.Y.; Dinarello C.A. Interleukin-32: A cytokine and inducer of TNFalpha. Immunity 2005, 22, 131-142.

[32]

Aass K.R.; Kastnes M.H.; Standal T. Molecular interactions and functions of IL-32. J. Leukoc. Biol. 2021, 109, 143-159. https://doi.org/10.1002/JLB.3MR0620-550R.

[33]

Park H.M.; Park J.Y.; Kim N.Y.; Kim H.; Kim H.G.; Son D.J.; Hong J.T.; Yoon D.Y. Recombinant Human IL-32theta Induces Polarization Into M1-like Macrophage in Human Monocytic Cells. Immune Netw. 2024, 24, e27. https://doi.org/10.4110/in.2024.24.e27.

[34]

Lee Y.S.; Han S.B.; Ham H.J.; Park J.H.; Lee J.S.; Hwang D.Y.; Jung Y.S.; Yoon D.Y.; Hong J.T. IL-32gamma suppressed atopic dermatitis through inhibition of miR-205 expression via inactivation of nuclear factor-kappa B. J. Allergy Clin. Immunol. 2020, 146, 156-168. https://doi.org/10.1016/j.jaci.2019.12.905.

[35]

Nam S.Y.; Kim H.M.; Jeong H.J. Attenuation of IL-32-induced caspase-1 and nuclear factor-kappaB activations by acteoside. Int. Immunopharmacol. 2015, 29, 574-582. https://doi.org/10.1016/j.intimp.2015.09.026.

[36]

Al-Shobaili H.A.; Farhan J.; Zafar U.; Rasheed Z. Functional role of human interleukin-32 and nuclear transcription factor-kB in patients with psoriasis and psoriatic arthritis. Int. J. Health Sci. 2018, 12, 29-34.

[37]

Lin J.; Xu R.; Hu L.; You J.; Jiang N.; Li C.; Che C.; Wang Q.; Xu Q.; Li J.; et al. Interleukin-32 induced thymic stromal lymphopoietin plays a critical role in the inflammatory response in human corneal epithelium. Cell. Signal. 2018, 49, 39-45. https://doi.org/10.1016/j.cellsig.2018.05.007.

[38]

Cao H.; Pan X.F.; Zhang K.; Shu X.; Li G. Interleukin-32 expression is induced by hepatitis B virus. Zhonghua Gan Zang Bing Za Zhi 2013, 21, 442-445. https://doi.org/10.3760/cma.j.issn.1007-3418.2013.06.014.

[39]

Hwang C.J.; Yun H.M.; Jung Y.Y.; Lee D.H.; Yoon N.Y.; Seo H.O.; Han J.Y.; Oh K.W.; Choi D.Y.; Han S.B.; et al. Reducing effect of IL-32alpha in the development of stroke through blocking of NF-kappaB, but enhancement of STAT3 pathways. Mol. Neurobiol. 2015, 51, 648-660. https://doi.org/10.1007/s12035-014-8739-0.

[40]

Yun H.M.; Kim J.A.; Hwang C.J.; Jin P.; Baek M.K.; Lee J.M.; Hong J.E.; Lee S.M.; Han S.B.; Oh K.W.; et al. Neuroinflammatory and Amyloidogenic Activities of IL-32beta in Alzheimer’s Disease. Mol. Neurobiol. 2015, 52, 341-352. https://doi.org/10.1007/s12035-014-8860-0.

[41]

Yin H.; Wu M.; Jia Y. Knockdown of IL-32 protects PC12 cells against oxygen-glucose deprivation/reoxygenation-induced injury via activation of Nrf2/NF-kappaB pathway. Metab. Brain Dis. 2020, 35, 363-371. https://doi.org/10.1007/s11011-019-00530-0.

[42]

Liu C.; Xu X.; Huang C.; Shang D.; Zhang L.; Wang Y. Inhibition of IL-32 Expression Ameliorates Cerebral Ischemia-Reperfusion Injury via the NOD/MAPK/NF-kappaB Signaling Pathway. J. Mol. Neurosci. 2020, 70, 1713-1727. https://doi.org/10.1007/s12031-020-01557-0.

PDF (1082KB)

643

Accesses

0

Citation

Detail

Sections
Recommended

/