Groundwater recharge modeling with integration of land use/land cover and climate change projections in Surakarta City, Indonesia
Sulistiani , Rachmat Fajar Lubis , I Putu Santikayasa , Muh. Taufik , Gumilar Utamas Nugraha
J. Groundw. Sci. Eng. ›› 2025, Vol. 13 ›› Issue (4) : 352 -370.
Groundwater recharge modeling with integration of land use/land cover and climate change projections in Surakarta City, Indonesia
Increased population mobility in urban areas drives higher water demand and significant changes in Land Use and Land Cover (LULC), which directly impact groundwater recharge capacity. This study aims to predict LULC changes in 2030 and 2040, analyse groundwater recharge quantities for historical, current, and projected conditions, and evaluate the combined impacts of LULC and climate change. The Cellular Automata-Artificial Neural Network (CA-ANN) method was employed to predict LULC changes, using classified and interpreted land use data from Landsat 7 ETM+ (2000 and 2010) and Landsat 8 OLI (2020) imagery. The Soil and Water Assessment Tool (SWAT) model was used to simulate groundwater recharge. Input data for the SWAT model included Digital Elevation Model (DEM), soil type, LULC, slope, and climate data. Climate projections were based on five Regional Climate Models (RCMs) for two time periods, 2021–2030 and 2031–2040, under Shared Socioeconomic Pathways (SSP) scenarios 2–45 and 5–85. The results indicate a significant increase in built-up areas, accounting for 71.08% in 2030 and 71.83% in 2040. Groundwater recharge projections show a decline, with average monthly recharge decreasing from 83.85 mm/month under SSP2-45 to 78.25 mm/month under SSP5-85 in 2030, and further declining to 82.10 mm/month (SSP2-45) and 77.44 mm/month (SSP5-85) in 2040. The expansion of impervious surfaces due to urbanization is the primary factor driving this decline. This study highlights the innovative integration of CA-ANN-based LULC predictions with climate projections from RCMs, offering a robust framework for analysing urban groundwater dynamics. The findings underscore the need for sustainable urban planning and water resource management to mitigate the adverse effects of urbanization and climate change. Additionally, the methodological framework and insights gained from this research can be applied to other urban areas facing similar challenges, thus contributing to broader efforts in groundwater conservation.
Groundwater Recharge / Climate Change / Remote Sensing / Socioeconomic Pathways / SWAT
| [1] |
Abbas Z, Yang G, Zhong Y, et al. 2021. Spatiotemporal change analysis and future scenario of lulc using the CA-ANN approach: A case study of the greater bay area, China. Land, 10(6): 584. DOI: 10.3390/land10060584 |
| [2] |
Adhikari RK, Mohanasundaram S, Shrestha, S. 2020. Impacts of land-use changes on the groundwater recharge in the Ho Chi Minh city, Vietnam. Environmental Research, 185: 109440. DOI: 10.1016/j.envres.2020.109440 |
| [3] |
Alfandhani RS, Hizbaron DR, Widyastuti M. 2021. Kajian Pengaruh Kondisi Resapan Air pada Pola Pemanfaatan Ruang di Sub DAS Jlantah-Walikun pada Wilayah DAS Bengawan Solo Hulu. Jurnal Pendidikan Tambusai, 5(3): 11236–11244. (in Indonesian |
| [4] |
Arnold JG, Kiniry R, Srinivasan R, et al. 2012. Input/output documentation soil & water assessment tool.Texas Water Resources Institute: Thrall, TX, USA, 1-650. |
| [5] |
As-syakur AR, Suarna IW, Adnyana IWS, et al. 2008. Studi Perubahan Penggunaan Lahan di DAS Badung. Bumi Lestari, 10(2): 200–207. (in Indonesian |
| [6] |
Boretti A, Rosa L. 2019. Reassessing the projections of the world water development report. NPJ Clean Water, 2(1): 15. DOI: 10.1038/s41545-019-0039-9. |
| [7] |
Bucton BGB, Shrestha S, Mohanasundaram S, et al. 2022. Impacts of climate and land use change on groundwater recharge under shared socioeconomic pathways: A case of Siem Reap, Cambodia. Environmental Research, 211: 113070. DOI: 10.1016/j.envres.2022.113070. |
| [8] |
Desky AF. 2022. Sosiologi pedesaan dan perkotaan. (In Indonesian |
| [9] |
DLH Kota Surakarta. 2021. Indeks Kualitas Lingkungan Hidup Kota Surakarta Tahun 2021. (In Indonesian |
| [10] |
DLH Kota Surakarta. 2022. Indeks Kualitas Lingkungan Hidup Kota Surakarta Tahun 2022. (In Indonesian |
| [11] |
Ferreira RS, Uagoda RE. 2017. Revista Brasileira de Geografia Física Análise da predição do balanço hídrico da bacia do ribeirão do Gama-DF através do modelo SWAT. In Revista Brasileira de Geografia Física, 10(03): 880-893. (in Portuguese |
| [12] |
Fitriana AL, Subiyanto S, Firdaus HS. 2017. Model Cellular Automata Markov untuk Prediksi Perkembangan Fisik Wilayah Permukiman Kota Surakarta menggunakan Sistem Informasi Geografis. Jurnal Geodesi Undip Oktober, 6(4): 246-253. (In Indonesian |
| [13] |
Guo H, Hu Q, Jiang T. 2008. Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China. Journal of Hydrology, 355(1-4): 106−122. DOI: 10.1016/j.jhydrol.2008.03.020. |
| [14] |
Guo XD, Liu Q, Li WP, et al. 2024. Groundwater imbalance and its mutual feedback relationship with land use in West Liaohe Plain. Hydrogeology & Engineering Geology, 51(4): 77−87. DOI: 10.16030/j.cnki.issn.1000-3665.202310001. |
| [15] |
Halefom A, Sisay E, Khare D, et al. 2017. Hydrological modeling of urban catchment using semi-distributed model. Modeling Earth Systems and Environment, 3(2): 683−692. DOI: 10.1007/s40808-017-0327-7. |
| [16] |
Indhanu N, Chalermyanont T, Chub-Uppakarn T. 2025. Spatial assessment of land use and land cover change impacts on groundwater recharge and groundwater level: A case study of the Hat Yai basin. Journal of Hydrology: Regional Studies, 57: 102097. DOI: 10.1016/j.ejrh.2024.102097. |
| [17] |
Landis JR, Koch GG. 1977. The measurement of observer agreement for categorical data. Biometrics, 159-174. |
| [18] |
Lei Z, Yang J, Yang Y, et al. 2019. Impact of urban sprawl on dry island effects and its countermeasures. Sustainable Cities and Society, 51. |
| [19] |
Luetkemeier R, Söller L, Frick-Trzebitzky F. 2022. Anthropogenic pressures on groundwater. In Encyclopedia of Inland Waters, Second Edition (3): 548-559. DOI: 10.1016/B978-0-12-819166-8.00183-3 |
| [20] |
Meaurio M, Zabaleta A, Uriarte JA, et al. 2015. Evaluation of SWAT models performance to simulate streamflow spatial origin: The case of a small forested watershed. Journal of Hydrology, 525: 326−334. DOI: 10.1016/j.jhydrol.2015.03.050. |
| [21] |
Mengistu TD, Chung IM, Kim MG, et al. 2022. Impacts and implications of land use land cover dynamics on groundwater recharge and surface runoff in east african watershed. Water (Switzerland), 14(13): 2068. DOI: 10.3390/w14132068. |
| [22] |
Moriasi DN, Arnold JG, Van Liew MW, et al. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3): 885−900. DOI: 10.13031/2013.23153. |
| [23] |
Muhammad R, Zhang W, Abbas Z, et al. 2022. Spatiotemporal change analysis and prediction of future land use and land cover changes using QGIS MOLUSCE Plugin and remote sensing big data: A case study of Linyi, China. Land, 11(3): 419. DOI: 10.3390/land11030419. |
| [24] |
Mustafa A, Van Rompaey A, Cools M, et al. 2018. Addressing the determinants of built-up expansion and densification processes at the regional scale. Urban Studies, 55(15): 3279−3298. DOI: 10.1177/0042098017749176. |
| [25] |
Nabila DA. 2023. Pemodelan prediksi dan kesesuaian perubahan penggunaan lahan menggunakan Cellular Automata-Artificial Neural Network (CA-ANN). Tunas Agraria, 6(1): 41−55. DOI: 10.31292/jta.v6i1.203 (In Indonesian |
| [26] |
Neitsch SL, Arnold JG, Kiniry JR, et al. 2011. Soil and water assessment tool theoretical documentation version 2009. |
| [27] |
Pandiangan NL, Diara IW, Kusmiyarti TB. 2021. Analisis Kondisi Daerah Resapan Air Kecamatan Sukasada Kabupaten Buleleng menggunakan Sistem Informasi Geografis. Jurnal Agroekoteknologi Tropika, 10(3): 324–336. (In Indonesian |
| [28] |
Pechlivanidis LG, Arheimer B. 2015. Large scale hudrological modelling by using modified PUB recommendations: The India-HYPE case. Hydrology and Earth System Sciences, 19: 4559−4579. DOI: 10.5194/hess-19-4559-2015. |
| [29] |
Piani C, Haerter JO, Coppola E. 2010. Statistical bias correction for daily precipitation in regional climate models over Europe. Theoretical and Applied Climatology, 99(1-2): 187−192. DOI: 10.1007/s00704-009-0134-9. |
| [30] |
Piyumi MMM, Abenayake C, Jayasinghe A, et al. 2021. Urban flood modeling application: Assess the effectiveness of building regulation in coping with urban flooding under precipitation uncertainty. Sustainable Cities and Society, 75: 103294. DOI: 10.1016/j.scs.2021.103294. |
| [31] |
Putranto TT, Krisna W, Revina R, et al. 2016. Groundwater vulnerability to contamination assessment using GOD method in Surakarta city, central Java. Proceeding PIT-PAAI. |
| [32] |
Putranto TT, Kusuma KI. 2009. Permasalahan airtanah pada daerah urban. Teknik, 30(1): 48−56. |
| [33] |
Putranto TT, Widiarso DA, Udin MI. 2017. Zonasi Potensi Air Tanah Kota Surakarta, JawaTengah. Proceeding, Seminar Nasional Kebumian. (In Indonesian |
| [34] |
Ridho FT, Nurhidayati E, Damayanti HN, et al. 2020. Komparasi Model Cellular Automata dalam Memprediksi Perubahan Lahan Sawah di Kabupaten Purworejo. Jukung Jurnal Teknik Lingkungan, 6(2): 157−167. DOI: 10.20527/jukung.v6i2.9259 (In Indonesian |
| [35] |
Sajjad MM, Wang J, Abbas H, et al. 2022. Impact of climate and land-use change on groundwater resources, study of Faisalabad District, Pakistan. Atmosphere, 13(7): 1097. DOI: 10.3390/atmos13071097. |
| [36] |
Santhi C, Allen PM, Muttiah RS, et al. 2008. Regional estimation of base flow for the conterminous United States by hydrologic landscape regions. Journal of Hydrology, 351(1-2): 139−153. DOI: 10.1016/j.jhydrol.2007.12.018. |
| [37] |
Santhi C, Arnold JG, Williams JR, et al. 2001. Validation of the SWAT Model on a Large Rwer Basin with Poin and Nonpoint Sources. Journal of the American Water Resources Association, 37: 1169−1188. DOI: 10.1111/j.1752-1688.2001.tb03630.x. |
| [38] |
Saputra DR, Yudono ARA, Partoyo. 2020. Assessment of the groundwater recharge potential areas using GIS in Kajor Kulon Hamlet, Selopamioro, Imogiri, Bantul, Yogyakarta. Jurnal Geografi Lingkungan Tropik, 4(2): 4. DOI: 10.7454/jglitrop.v4i2.89 |
| [39] |
Scanlon BR, Reedy RC, Stonestrom DA, et al. 2005. Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 11(10): 1577−1593. DOI: 10.1111/j.1365-2486.2005.01026.x. |
| [40] |
Sejati AE. 2020. Analisis Perubahan Tutupan Lahan dan Pengaruhnya terhadap Kemampuan Resapan Air di Daerah Aliran Sungai. Jurnal Planologi, 17(1): 1−12. DOI: 10.30659/jpsa.v17i1.7555. (In Indonesian |
| [41] |
Siddik MS, Tulip SS, Rahman A, et al. 2022. The impact of land use and land cover change on groundwater recharge in northwestern Bangladesh. Journal of Environmental Management, 315: 115130. DOI: 10.1016/j.jenvman.2022.115130. |
| [42] |
Sisay E, Halefom A, Khare D, et al. 2017. Hydrological modelling of ungauged urban watershed using SWAT model. Modeling Earth Systems and Environment, 3(2): 693−702. DOI: 10.1007/s40808-017-0328-6. |
| [43] |
Stull R. 2017. Practical meteorology an algebra-based survey of atmospheric science. Available on http://www.eos.ubc.ca/~geol/softeng/practical.html |
| [44] |
Suharyanto. 2018. Analisis Dampak Perubahan Tata Guna Lahan terhadap Daerah Resapan Air di Wilayah Perkotaan. Jurnal Teknologi Lingkungan, 19(2): 149−158. (In Indonesian |
| [45] |
Tamm O, Kokkonen T, Warsta L, et al. 2023. Modelling urban stormwater management changes using SWMM and convection-permitting climate simulations in cold areas. Journal of Hydrology, 622: 129656. DOI: 10.1016/j.jhydrol.2023.129656. |
| [46] |
Tegegne G, Melesse AM, Worqlul AW. 2020. Development of multi-model ensemble approach for enhanced assessment of impacts of climate change on climate extremes. Science of the Total Environment, 704: 135357. DOI: 10.1016/j.scitotenv.2019.135357. |
| [47] |
Wibisono P, Miladan N, Pamardhi-Utomo R. 2023. Hubungan Perubahan Kerapatan Vegetasi dan Bangunan terhadap Suhu Permukaan Lahan: Studi Kasus di Aglomerasi Perkotaan Surakarta, 5: 148–162. |
| [48] |
Widyastuti MT, Taufik M, Santikayasa IP. 2018. Prediksi Debit Jangka Panjang untuk Sungai Bengawan Solo. Jurnal Geografi, 15(2): 71−82. DOI:10.15294/jg.v15i2.15387 (In Indonesian |
| [49] |
Willmot CJ, Matsuura K. 2005. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in assessing average model performance. Climate Research, 30(1): 79−82. DOI: 10.3354/cr030079. |
| [50] |
Xu T, Gao J, Coco G. 2019. Simulation of urban expansion via integrating artificial neural network with Markov chain–cellular automata. International Journal of Geographical Information Science, 33(10): 1960−1983. DOI: 10.1080/13658816.2019.1600701. |
| [51] |
Yunus HS. 2005. Manajemen kota: Perspektif spasial. Yogyakarta: Pustaka pelajar, 2005. (In Indonesian |
| [52] |
Zhang JK, Wang JP, Shi JS. 2024. Attribution analysis of water-sediment variation under the influence of climate change and human activities in the Kuye River Basin. Hydrogeology & Engineering Geology, 51(6): 47−59. DOI: 10.16030/j.cnki.issn.1000-3665.202312053. |
| [53] |
Zhang Q, Liu J, Singh VP, et al. 2016. Evaluation of impacts of climate change and human activities on streamflow in the Poyang Lake basin, China. Hydrological Processes, 30(14): 2562−2576. DOI: 10.1002/hyp.10814. |
Journal of Groundwater Science and Engineering Editorial Office
/
| 〈 |
|
〉 |