Optimal fault detection from seismic data using intelligent techniques: A comprehensive review of methods
Bhaktishree Nayak , Pallavi Nayak
J. Groundw. Sci. Eng. ›› 2025, Vol. 13 ›› Issue (2) : 193 -208.
Optimal fault detection from seismic data using intelligent techniques: A comprehensive review of methods
Seismic data plays a pivotal role in fault detection, offering critical insights into subsurface structures and seismic hazards. Understanding fault detection from seismic data is essential for mitigating seismic risks and guiding land-use plans. This paper presents a comprehensive review of existing methodologies for fault detection, focusing on the application of Machine Learning (ML) and Deep Learning (DL) techniques to enhance accuracy and efficiency. Various ML and DL approaches are analyzed with respect to fault segmentation, adaptive learning, and fault detection models. These techniques, benchmarked against established seismic datasets, reveal significant improvements over classical methods in terms of accuracy and computational efficiency. Additionally, this review highlights emerging trends, including hybrid model applications and the integration of real-time data processing for seismic fault detection. By providing a detailed comparative analysis of current methodologies, this review aims to guide future research and foster advancements in the effectiveness and reliability of seismic studies. Ultimately, the study seeks to bridge the gap between theoretical investigations and practical implementations in fault detection.
Seismic data / Fault detection / Fault Segmentation / Machine learning / Deep learning / Adaptive learning
| [1] |
Alfarhan M, Deriche M, Maalej A, et al. 2020. Multiple events detection in seismic structures using a novel U-Net variant. In 2020 IEEE International Conference on Image Processing (ICIP), 2900-2904, IEEE. DOI: 10.1109/ICIP40778.2020.9190682. |
| [2] |
Alfarhan M, Maalej A, Deriche M. 2020. Concurrent detection of salt domes and faults using resnet with u-net. In 2020 6th Conference on Data Science and Machine Learning Applications (CDMA), 118−122, IEEE. DOI: 10.1109/CDMA47397.2020.00026. |
| [3] |
Alfarhan M, Deriche M, Maalej A. 2020. Robust concurrent detection of salt domes and faults in seismic surveys using an improved UNet architecture. IEEE access, 10: 39424−39435. DOI: 10.1109/ACCESS.2020.3043973. |
| [4] |
Aloisio A, Battista LD, Alaggio R, et al. 2021. Assessment of structural interventions using Bayesian updating and subspace-based fault detection methods: The case study of S. Maria di Collemaggio basilica, L'Aquila, Italy. Structure and Infrastructure Engineering, 17(2): 141−155. DOI: 10.1080/15732479.2020.1731559. |
| [5] |
An Y, Guo J, Ye Q, et al. 2021. Deep convolutional neural network for automatic fault recognition from 3D seismic datasets. Computers & Geosciences, 153: 104776. DOI: 10.1016/j.cageo.2021.104776. |
| [6] |
Ao Y, Lu W, Xu P, et al. 2021. Seismic dip estimation with a domain knowledge constrainedtransfer learning approach. IEEE Transactions on Geoscience and Remote Sensing, 60: 1−16. DOI: 10.1109/TGRS.2021.3061438. |
| [7] |
Ashraf U, Zhang H, Anees A, et al. 2020. Application of unconventional seismic attributes and unsupervised machine learning for the identification of fault and fracture network. Applied Sciences, 10(11): 3864. DOI: 10.3390/app10113864. |
| [8] |
Bi Z, Wu X, Geng Z, et al. 2021. Deep relative geologic time: A deep learning method for simultaneously interpreting 3‐D seismic horizons and faults. Journal of Geophysical Research: Solid Earth, 126(9): e2021JB021882. DOI: 10.1029/2021JB021882. |
| [9] |
Cunha A, Pochet A, Lopes H, et al. 2020. Seismic fault detection in real data using transfer learning from a convolutional neural network pre-trained with synthetic seismic data. Computers & Geosciences, 135: 104344. DOI: 10.1016/j.cageo.2019.104344. |
| [10] |
Di H, Li C, Smith S, et al. 2021. Imposing interpretational constraints on a seismic interpretation convolutional neural network. Geophysics, 86(3): IM63−IM71. DOI: 10.1190/geo2020-0449.1. |
| [11] |
Dou Y, Li K, Zhu J, et al. 2021. Attention-based 3-D seismic fault segmentation training by afew 2-D slice labels. IEEE Transactions on Geoscience and Remote Sensing, 60: 1−15. DOI: 10.1109/TGRS.2021.3113676. |
| [12] |
Dou Y, Li K, Zhu J, et al. 2022. MD loss: Efficient training of 3-D seismic fault segmentation network under sparse labels by weakening anomaly annotation. IEEE Transactions on Geoscience and Remote Sensing, 1−13. |
| [13] |
Dou YM, Li KW, Dong MH, et al. 2024. FaultSSL: Seismic fault detection via semisupervised learning. Geophysics, 89(3): M79−M91. DOI: 10.1190/geo2023-0550.1. |
| [14] |
Dou YM, Li KW. 2024. 3D seismic fault detection via contrastive-reconstruction representation learning. Expert Systems with Applications, 123617. DOI: 10.1016/j.eswa.2024.123617. |
| [15] |
Feng C, Gao G, Zhang S, et al. 2022. Fault slip potential induced by fluid injection in the Matouying enhanced geothermal system (EGS) field, Tangshan seismic region, North China. Natural Hazards and Earth System Sciences, 22(7): 2257−2287. DOI: 10.5194/nhess-22-2257-2022. |
| [16] |
Feng T, Zhang M, Xu L, et al. 2022. Machine learning‐based earthquake catalog and tomography characterize the middle‐northern section of the Xiaojiang fault zone. Seismological Society of America, 93(5): 2484−2497. DOI: 10.1785/0220220116. |
| [17] |
Gong Y, Zhu C, Zhu G, et al. 2024. Seismic fault identification in coal mines based on the self-organizing map-gray wolf optimizer-support vector machine algorithm. Interpretation, 12(1): B1−B15. DOI: 10.1190/INT-2023-0025.1. |
| [18] |
He T, Wu B, Zhu X. 2021. Seismic data consecutively missing trace interpolation based on multistage neural network training process. IEEE Geoscience and Remote Sensing Letters, 19: 1−5. DOI: 10.1109/LGRS.2021.3089585. |
| [19] |
Hosseini-Fard E, Roshandel-Kahoo A, Soleimani-Monfared M, et al. 2022. Automatic seismic image segmentation by introducing a novel strategy in histogram of oriented gradients. Journal of Petroleum Science and Engineering, 209: 109971. DOI: 10.1016/j.petrol.2021.109971. |
| [20] |
Hu G, Hu Z, Liu J, et al. 2020. Seismic fault interpretation using deep learning-based semantic segmentation method. IEEE Geoscience and Remote Sensing Letters, 19: 1−5. DOI: 10.1109/LGRS.2020.3041301. |
| [21] |
Isaac DB, Abu El Ata AS. 2023. Improvement of seismic data quality and recognition of fault discontinuities through seismic data conditioning applications: A case study of Issaran oil field, Gulf of Suez, Egypt. Journal of Petroleum Exploration and Production Technology, 13(2): 591−607. DOI: 10.1007/s13202-022-01574-2. |
| [22] |
Jang J, So BD, Yuen DA. 2023. A machine learning algorithm with random forest for recognizing hidden control factors from seismic fault distribution. Geosciences Journal, 27(1): 113−126. DOI: 10.1007/s12303-022-0029-7. |
| [23] |
Khayer K, Hosseini Fard E, Roshandel Kahoo A, et al. 2023. Integration of feature extraction, attribute combination and image segmentation for object delineation on seismic images. Acta Geophysica, 71(1): 275−292. DOI: 10.1007/s11600-022-00921-5. |
| [24] |
Laudon C, Qi J, Rondon A, et al. 2021. An enhanced fault detection workflow combining machine learning and seismic attributes yields an improved fault model for Caspian Sea asset. First break, 39(10): 53−60. DOI: 10.3997/1365-2397.fb2021075. |
| [25] |
Lefevre M, Souloumiac P, Cubas N, et al. 2020. Experimental evidence for crustal control over seismic fault segmentation. Geology, 48(8): 844−848. DOI: 10.1130/G47115.1. |
| [26] |
Li JT, Wu XM, Hu ZX. 2021. Deep learning for simultaneous seismic image super-resolution and denoising. IEEE Transactions on Geoscience and Remote Sensing, 60: 1−11. DOI: 10.1109/TGRS.2021.3057857. |
| [27] |
Li S, Yang C, Sun H, et al. 2019. Seismic fault detection using an encoder–decoder convolutional neural network with a small training set. Journal of Geophysics and Engineering, 16(1): 175−189. DOI: 10.1093/jge/gxy015. |
| [28] |
Li W, Wang J. 2021. Residual learning of cycle-GAN for seismic data denoising. IEEE access, 9: 11585−11597. DOI: 10.1109/ACCESS.2021.3049479. |
| [29] |
Li X, Li K, Xu Z, et al. 2023. Fault-Seg-Net: A method for seismic fault segmentation based on multi-scale feature fusion with imbalanced classification. Computers and Geotechnics, 158: 105412. DOI: 10.1016/j.compgeo.2023.105412. |
| [30] |
Li X, Li K, Xu Z, et al. 2024. Fault-Seg-LNet: A method for seismic fault identification based on lightweight and dynamic scalable network. Engineering Applications of Artificial Intelligence, 127: 107316. DOI: 10.1016/j.engappai.2023.107316. |
| [31] |
Li X, Li, K. 2024. Fault-attri-attention: A method for fault identification based on seismic attributes attention. Neural Computing and Applications, 36(7): 3645−3661. DOI: 10.1007/s00521-023-09265-7. |
| [32] |
Lima G, Zeiser FA, Da Silveira A, et al. 2024. An encoder–decoder deep neural network for binary segmentation of seismic facies. Computers & Geosciences, 183: 105507. DOI: 10.1016/j.cageo.2023.105507. |
| [33] |
Lin L, Zhong Z, Cai Z, et al. 2022. Automatic geologic fault identification from seismic data using 2. 5 D channel attention U-net. Geophysics, 87(4): IM111−IM124. DOI: 10.1190/geo2021-0805.1. |
| [34] |
Liu ZN, Zhou C, Hu GM, et al. 2020, May. Interpretability-guided convolutional neural networks for seismic fault segmentation. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4312−4316). IEEE. DOI: 10.1109/ICASSP40776.2020.9053472. |
| [35] |
Lyu B, Qi J, Machado G, et al. 2019. Seismic fault enhancement using spectral decomposition assisted attributes. In SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists: 1938−1942. DOI: 10.1190/segam2019-3215703.1. |
| [36] |
Ma X, Yao G, Zhang F, et al. 2023. 3D Seismic Fault Detection Using Recurrent Convolutional Neural Networks with Compound Loss. IEEE Transactions on Geoscience and Remote Sensing, 61: 1−15. DOI: 10.1109/TGRS.2023.3275951. |
| [37] |
Mahadik R, Singh G, Routray A. 2021. Multispectral coherence analysis for better fault visualization in seismic data. IEEE Geoscience and Remote Sensing Letters, 19: 1−5. DOI: 10.1109/LGRS.2021.3076213. |
| [38] |
Michie EA, Mulrooney MJ, Braathen A. 2021. Fault interpretation uncertainties using seismic data, and the effects on fault seal analysis: A case study from the Horda Platform, with implications for CO2 storage. Solid Earth Discussions, 12(6): 1259–1286. DOI: 10.5194/se-12-1259-2021. |
| [39] |
Mizutani A, Yomogida K, Tanioka Y. 2020. Early tsunami detection with near-fault ocean-bottom pressure gauge records based on the comparison with seismic data. Journal of Geophysical Research: Oceans, 125(9): e2020JC016275. DOI: 10.1029/2020JC016275. |
| [40] |
Martín-Martín M, Bullejos M, Cabezas D, et al. 2023. Using Python libraries and k-Nearest neighbors algorithms to delineate syn-sedimentary faults in sedimentary porous media. Marine and Petroleum Geology, 153: 106283. DOI: 10.1016/j.marpetgeo.2023.106283. |
| [41] |
Mousavi J, Radad M, Soleimani Monfared M, et al. 2022. Fault enhancement in seismic images by introducing a novel strategy integrating attributes and image analysis techniques. Pure and Applied Geophysics, 179(5): 1645−1660. DOI: 10.1007/s00024-022-03014-y. |
| [42] |
Mustafa A, Rastegar R, Brown T, et al. 2024. Visual attention guided learning with incomplete labels for Seismic Fault Interpretation. IEEE Transactions on Geoscience and Remote Sensing, 62: 1−12. DOI: 10.1109/TGRS.2024.3370037. |
| [43] |
Noori M, Hassani H, Javaherian A, et al. 2019. Automatic fault detection in seismic data using Gaussian process regression. Journal of Applied Geophysics, 163: 117−131. DOI: 10.1016/j.jappgeo.2019.02.018. |
| [44] |
Otchere DA, Tackie-Otoo BN, Mohammad MAA, et al. 2022. Improving seismic fault map through data conditioning using a pre-trained deep convolutional neural network: A case study on Groningen field. Journal of Petroleum Science and Engineering, 213: 110411. DOI: 10.1016/j.petrol.2022.110411. |
| [45] |
Palo P, Routray A, Mahadik R, et al. 2023. Fault detection in seismic data using graph convolutional network. The Journal of Supercomputing, 79(11): 12737−12765. DOI: 10.1007/s11227-023-05173-8. |
| [46] |
Ren K, Zou G, Zhang S, et al. 2023. Fault identification and reliability evaluation using an SVM model based on 3-D seismic data volume. Geophysical Journal International, 234(1): 755−768. DOI: 10.1093/gji/ggad095. |
| [47] |
Share PE, Allam AA, Ben-Zion Y, et al. 2019. Structural properties of the San Jacinto fault zone at Blackburn Saddle from seismic data of a dense linear array. Pure and Applied Geophysics, 176: 1169−1191. DOI: 10.1007/s00024-018-1988-5. |
| [48] |
Sheng M, Chu R, Peng Z, et al. 2022. Earthquakes triggered by fluid diffusion and boosted by fault reactivation in Weiyuan, China due to hydraulic fracturing. Journal of Geophysical Research: Solid Earth, 127(5): e2021JB022963. DOI: 10.1029/2021JB022963. |
| [49] |
Titos M, Gutiérrez L, Benítez C, et al. 2023. Multi-station volcano tectonic earthquake monitoring based on transfer learning. Frontiers in Earth Science, 11: 1204832. DOI: 10.3389/feart.2023.1204832. |
| [50] |
Ul Islam MS. 2020. Using deep learning-based methods to classify salt bodies in seismic images. Journal of Applied Geophysics, 178: 104054. DOI: 10.1016/j.jappgeo.2020.104054. |
| [51] |
Visini F, Valentini A, Chartier T, et al. 2020. Computational tools for relaxing the fault segmentation in probabilistic seismic hazard modelling in complex fault systems. Pure and Applied Geophysics, 177: 1855−1877. DOI: 10.1007/s00024-019-02114-6. |
| [52] |
Vu MT, Jardani A. 2022. Mapping discrete fracture networks using inversion of hydraulic tomography data with convolutional neural network: SegNet-Fracture. Journal of Hydrology, 609: 127752. DOI: 10.1016/j.jhydrol.2022.127752. |
| [53] |
Vu MT, Jardani, A. 2022. Multi-task neural network in hydrological tomography to map the transmissivity and storativity simultaneously: HT-XNET. Journal of Hydrology, 612: 128167. DOI: 10.1016/j.jhydrol.2022.128167. |
| [54] |
Waheed UB, Alkhalifah T, Haghighat E, et al. 2021. PINNtomo: Seismic tomography using physics-informed neural networks. arXiv preprint arXiv: 2104.01588. DOI: 10.48550/arXiv.2104.01588. |
| [55] |
Wang QZ, Zhu ZY, Ding JC, et al. 2023. Research and application of intelligent fault detection method based on multi-scale fusion and Enhancement. In International Field Exploration and Development Conference, Singapore: Springer Nature Singapore, 543-553. DOI: 10.1007/978-981-97-0483-5_53. |
| [56] |
Wang Z, Li B, Liu N, et al. 2020. Distilling knowledge from an ensemble of convolutional neural networks for seismic fault detection. IEEE Geoscience and Remote Sensing Letters, 19: 1−5. DOI: 10.1109/LGRS.2020.3034960. |
| [57] |
Wei XL, Zhang CX, Kim SW, et al. 2022. Seismic fault detection using convolutional neural networks with focal loss. Computers & Geosciences, 158: 104968. DOI: 10.1016/j.cageo.2021.104968. |
| [58] |
Wu J, Liu B, Zhang H, et al. 2021. Fault detection based on fully convolutional networks (FCN). Journal of Marine Science and Engineering, 9(3): 259. DOI: 10.3390/jmse9030259. |
| [59] |
Wu J, Shi Y, Wang W. 2022. Fault imaging of seismic data based on a modified u-net with dilated convolution. Applied Sciences, 12(5): 2451. DOI: 10.3390/app12052451. |
| [60] |
Wu X, Liang L, Shi Y, et al. 2019. Multitask learning for local seismic image processing: fault detection, structure-oriented smoothing with edge-preserving, and seismic normal estimation by using a single convolutional neural network. Geophysical Journal International, 219(3): 2097−2109. DOI: 10.1093/gji/ggz418. |
| [61] |
Wu X, Liang L, Shi Y, et al. 2019. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics, 84(3): IM35−IM45. DOI: 10.1190/geo2018-0646.1. |
| [62] |
Xu F, Li Z, Wen B, et al. 2021. The use of 3D convolutional autoencoder in fault and fracture network characterization. Geofluids, 1-11. DOI: 10.1155/2021/6650823. |
| [63] |
Yan Z, Liu S, Gu H. 2019. Fault image enhancement using a forward and backward diffusion method. Computers & Geosciences, 131: 1−14. DOI: 10.1016/j.cageo.2019.06.004. |
| [64] |
Yan Z, Zhang Z, Liu S. 2021. Improving performance of seismic fault detection by fine-tuning the convolutional neural network pre-trained with synthetic samples. Energies, 14(12): 3650. DOI: 10.3390/en14123650. |
| [65] |
Yuan Z, Huang H, Jiang Y, et al. 2019. An enhanced fault-detection method based on adaptive spectral decomposition and super-resolution deep learning. Interpretation, 7(3): T713−T725. DOI: 10.1190/INT-2018-0180.1. |
| [66] |
Zeng A, Yan L, Huang Y, et al. 2021. Intelligent detection of small faults using a support vector machine. Energies, 14(19): 6242. DOI: 10.3390/en14196242. |
| [67] |
Zeng L, Niu Y, Ren W, et al. 2024. A method for intelligent identification of faults in seismic using an attention-based ES-UNet network with model re-training learning. Journal of Applied Geophysics, 105344. DOI: 10.1016/j.jappgeo.2024.105344. |
| [68] |
Zhang R, Sun Q, Mao Y, et al. 2022. Accelerating hydraulic fracture imaging by deep transfer learning. IEEE Transactions on Antennas and Propagation, 70(7): 6117−6121. DOI: 10.1109/TAP.2022.3161325. |
| [69] |
Zhang Z, Chen R, Ma J. 2024. Improving seismic fault recognition with Self-Supervised Pre-Training: A Study of 3D transformer-based with multi-scale decoding and fusion. Remote Sensing, 16(5): 922. DOI: 10.3390/rs16050922. |
| [70] |
Zhou R, Yao X, Hu, G, et al. 2021. Learning from unlabelled real seismic data: Fault detection based on transfer learning. Geophysical Prospecting, 69(6): 1218−1234. DOI: 10.1111/1365-2478.13097. |
| [71] |
Zhou R, Yao X, Wang Y, et al. 2021. Seismic fault detection with progressive transfer learning. Acta Geophysica, 69: 2187−2203. DOI: 10.1007/s11600-021-00668-5. |
| [72] |
Zini JE, Rizk Y, Awad M. 2019. A deep transfer learning framework for seismic data analysis: A case study on bright spot detection. IEEE Transactions on Geoscience and Remote Sensing, 58(5): 3202−3212. DOI: 10.1109/TGRS.2019.2950888. |
Journal of Groundwater Science and Engineering Editorial Office
/
| 〈 |
|
〉 |