2025-04-11 2019, Volume 32 Issue 2

  • Select all
  • Yongfu Chai , Hailin Shang , Xiaofei Zhang , Ruichang Zhang , Xiao Liu , Ming Yue

    Leaf trait-based research has become the preferred method to understand the ecological strategies of plants. However, there is still a debate on whether area-based or mass-based traits provide different insights into environmental adaptations and responses. In this study, seven key leaf traits (maximum net photosynthetic rate, dark respiration rate, nitrogen content, photosynthetic nitrogen use efficiency, leaf mass per area, leaf dry matter contents and leaf area) of 43 woody species were quantified on the basis of both area and mass along an altitudinal gradient (1100–2700 m) in the Qinling Mountains of China. Differences in leaf traits and bivariate correlations between the two expressions were compared. By considering different expressions, the strengths and directions of the responses of leaf traits to the altitudinal gradient were determined. Leaf traits showed large variations; interspecific variations contributed more to total variance than intraspecific variations. Bivariate correlations between photosynthetic traits and structural traits (mass per area, dry matter content, and area) were weaker on a mass basis than those on an area basis. Most traits exhibited quadratic trends along the altitudinal gradient, and these patterns were more noticeable for area-based than mass-based traits. Area-based traits were more sensitive to changes in temperature and precipitation associated with altitude. These results provide evidence that mass- versus area-based traits show different ecological responses to environmental conditions associated with altitude, even if they do not contain very broad spatial scales. Our results also indicate distinction of photosynthetic acclimation among the two expressions along an altitudinal gradient, reflecting trade-offs among leaf structure and physiological traits.

  • Jian Sun , Xiaoli Zhou , Yanchun Xu , Yan Hua , Thomas D. Dahmer , Shuhui Yang

    Reintroduction is an important strategy to restore or re-establish wild populations of endangered species. Pre-release training is a necessary step to ensure post-reintroduction survival. However, studies reported contradicting outcomes after pre-release training of juveniles and adults. This study used farmed and feral American mink (Neovison vison) to analyze the influence of captive breeding on the morphology, structure and efficiency of the two major hindlimb levers, the femur and tibia pivoted by hip and knee joints that are essential for locomotion. Results showed that captive breeding did not alter the sexual dimorphism of the two levers that are related to survival in the wild. Captive-bred mink showed slightly altered morphology of the femur and fundamental structure of the hindlimb levers that improved efficiency, but this resulted in reduction of performance related to foraging in both terrestrial and aquatic environments, especially for females. These findings suggest that reintroduction of mustelid as exampled by the mink here should focus on juveniles because the skeletal alterations associated with captive rearing were recorded only among adults and are irreversible in adulthood. In contrast, captive-reared juveniles showed no skeletal alterations and would be expected to recovery from any atrophy of the muscular system caused by captive rearing for shorter durations. Our results support the application of pre-release training of juveniles in enriched environments as a method for alleviating structural alteration of appendages and enhancing locomotion to increase survival probability in complex habitats.