The effect of forest disturbances and regeneration scenario on soil organic carbon pools and fluxes: a review

Marcin Pietrzykowski , Bartłomiej Świątek , Bartłomiej Woś , Anna Klamerus-Iwan , Paweł Mąsior , Marek Pająk , Piotr Gruba , Justyna Likus-Cieślik , Jan Tabor , Marek Ksepko , Marcin Chodak

Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) : 12

PDF
Journal of Forestry Research ›› 2025, Vol. 36 ›› Issue (1) :12 DOI: 10.1007/s11676-024-01807-6
Review Article
review-article

The effect of forest disturbances and regeneration scenario on soil organic carbon pools and fluxes: a review

Author information +
History +
PDF

Abstract

Forest ecosystems are one of the largest terrestrial carbon (C) reservoirs on Earth and an important sink of anthropogenic CO2 emissions. Abiotic and biotic disturbances such as windfalls, fires, outbreaks of insects or pests may negatively affect C storage in forest ecosystems decreasing their role as CO2 sink. The objective of this review was to summarize the current knowledge on the impact of large-scale forest ecosystem disturbances caused by windthrow and insect outbreaks on soil C stocks and cycles, and to gather information on the impact of restoration treatments performed in disturbed stands in the context of carbon accumulation in forest soils. Discussed were effects of windstorms and insect outbreaks as well as impacts of various approaches of forest regeneration after disturbance on C stocks and fluxes. Disturbances decrease C stocks in forest ecosystems and turn them from C sink into C source for a certain time. Regeneration of the disturbed forest restores its role as a CO2 sink. In montane forests artificial afforestation seems to shorten the time of achieving C parity. However, no data exists for lowland forests. Hence, there is an urgent need for studies that assess effect of windfalls and insect outbreaks on carbon storage in forests of lowland Europe.

Keywords

Carbon sequestration / Forest disturbance / Forest regeneration / Forest dieback

Cite this article

Download citation ▾
Marcin Pietrzykowski, Bartłomiej Świątek, Bartłomiej Woś, Anna Klamerus-Iwan, Paweł Mąsior, Marek Pająk, Piotr Gruba, Justyna Likus-Cieślik, Jan Tabor, Marek Ksepko, Marcin Chodak. The effect of forest disturbances and regeneration scenario on soil organic carbon pools and fluxes: a review. Journal of Forestry Research, 2025, 36(1): 12 DOI:10.1007/s11676-024-01807-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Avera BN, Rhoades CC, Calderόn F, Cotrufo MF. Soil C storage following salvage logging and residue management in bark beetle-infested lodgepole pine forests. For Ecol Manag, 2020, 472 118251

[2]

Balesdent J. The significance of organic separates to carbon dynamics and its modelling in some cultivated soils. Eur J Soil Sci, 1996, 47(4): 485-493

[3]

Balon J, Maciejowski W. Wpływ huraganowego wiatru z dnia 19 listopada 2004 na krajobraz południowego skłonu Tatr. Problemy Ekologii Krajobrazu, 2005, 17: 92-100

[4]

Biederbeck VO, Janzen HH, Campbell CA, Zentner RP. Labile soil organic matter as influenced by cropping practices in an arid environment. Soil Biol Biochem, 1994, 26(12): 1647-1656

[5]

Bradford JB, Fraver S, Milo AM, D’Amato AW, Palik B, Shinneman DJ. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks. For Ecol Manag, 2012, 267: 209-214

[6]

Bremer E, Janzen HH, Johnston AM. Sensitivity of total, light fraction and mineralizable organic matter to management practices in a Lethbridge soil. Can J Soil Sci, 1994, 74(2): 131-138

[7]

Brzeziecki B, Andrzejczyk T, Żybura H. Natural regeneration of trees in the Bialowieza Forest. Sylwan, 2018, 162(11): 883-896

[8]

Brzeziecki B, Ciurzycki W, Keczyński A. Changes of herb layer vegetation during the period 1959–2016 on the permanent study plot in the compartment 319 of Białowieża National Park. Sylwan, 2018, 162(12): 980-988

[9]

Campbell JL, Sun OJ, Law BE. Disturbance and net ecosystem production across three climatically distinct forest landscapes. Glob Biogeochem Cycles, 2004, 18(4): GB4017

[10]

Christophel D, Höllerl S, Prietzel J, Steffens M. Long-term development of soil organic carbon and nitrogen stocks after shelterwood- and clear-cutting in a mountain forest in the Bavarian Limestone Alps. Eur J for Res, 2015, 134(4623-640

[11]

Coleman DC, Elliott ET. Let the soil work for us. Ecol Bull, 1988, 39: 23-32

[12]

Dalal RC, Mayer RJ. Long term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. III. Distribution and kinetics of soil organic carbon in particle size fractions. Soil Res, 1986, 24(2): 293

[13]

Dmyterko E, Bruchwald A. Assessment of the damage to Polish forests caused by a hurricane in August 2017. Sylwan, 2020, 164(5355-364

[14]

Dobor L, Hlásny T, Rammer W, Zimová S, Barka I, Seidl R. Is salvage logging effectively dampening bark beetle outbreaks and preserving forest carbon stocks?. J Appl Ecol, 2020, 57(1): 67-76

[15]

Don A, Bärwolff M, Kalbitz K, Andruschkewitsch R, Jungkunst HF, Schulze ED. No rapid soil carbon loss after a windthrow event in the High Tatra. For Ecol Manag, 2012, 276: 239-246

[16]

dos Santos LT, Magnabosco Marra D, Trumbore S, de Camargo PB, Negrón-Juárez RI, Lima AJN, Ribeiro GHPM, dos Santos J, Higuchi N. Windthrows increase soil carbon stocks in a central Amazon forest. Biogeosciences, 2016, 13(4): 1299-1308

[17]

Edburg SL, Hicke JA, Lawrence DM, Thornton PE. Simulating coupled carbon and nitrogen dynamics following mountain pine beetle outbreaks in the western United States. J Geophys Res, 2011, 116(G4): G04033

[18]

FAO. Global forest resources assessment 2020: main report, 2020, Rome, FAO184

[19]

Feller C, Beare MH. Physical control of soil organic matter dynamics in the tropics. Geoderma, 1997, 79(1–469-116

[20]

Gardiner B, Berry P, Moulia B. Review: wind impacts on plant growth, mechanics and damage. Plant Sci, 2016, 245: 94-118

[21]

Gardiner B, Blennow K, Carnus JM, Fleischer M, Ingemarson F, Landmann G, Lindner M, Marzano M, Nicoll B, Orazio C, Peyron JL, Reviron MP, Schelhaas MJ, Schuck A, Spielmann M, Usbeck T (2010) Destructive storms in European forests: past and forthcoming impacts. Final report to DG Environment (07.0307/2009/SI2.540092/ETU/B.1)

[22]

Gavrikov VL, Sharafutdinov RA, Knorre AA, Pakharkova NV, Shabalina OM, Bezkorovaynaya IN, Borisova IV, Erunova MG, Khlebopros RG. How much carbon can the Siberian boreal taiga store: a case study of partitioning among the above-ground and soil pools. J for Res, 2016, 27(4): 907-912

[23]

Grelle A, Hedwall PO, Strömgren M, Håkansson C, Bergh J. From source to sink–recovery of the carbon balance in young forests. Agric for Meteor, 2023, 330 109290

[24]

Gruba P, Socha J, Błońska E, Lasota J. Effect of variable soil texture, metal saturation of soil organic matter (SOM) and tree species composition on spatial distribution of SOM in forest soils in Poland. Sci Total Environ, 2015, 521: 90-100

[25]

Guggenberger G, Frey SD, Six J, Paustian K, Elliott ET. Bacterial and fungal cell-wall residues in conventional and no-tillage agroecosystems. Soil Sci Soc Am J, 1999, 63(5): 1188-1198

[26]

Hansen EM. Forest development and carbon dynamics after mountain pine beetle outbreaks. For Sci, 2014, 60(3): 476-488

[27]

Hassink J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil, 1997, 191(1): 77-87

[28]

Healey SP, Raymond CL, Lockman IB, Hernandez AJ, Garrard C, Huang CQ. Root disease can rival fire and harvest in reducing forest carbon storage. Ecosphere, 2016, 7(11 e01569

[29]

Hicke JA, Allen CD, Desai AR, Dietze MC, Hall RJ, Ted Hogg EH, Kashian DM, Moore D, Raffa KF, Sturrock RN, Vogelmann J. Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Glob Change Biol, 2012, 18(1): 7-34

[30]

Hotta W, Morimoto J, Inoue T, Suzuki SN, Umebayashi T, Owari T, Shibata H, Ishibashi S, Hara T, Nakamura F. Recovery and allocation of carbon stocks in boreal forests 64 years after catastrophic windthrow and salvage logging in northern Japan. For Ecol Manag, 2020, 468 118169

[31]

Hryniewicka A, Mandziuk A. Economic consequences of the 2016 storm in the Supraśl Forest District. Sylwan, 2020, 164(4): 321-330

[32]

Hurteau MD. Letcher TM. The role of forests in the carbon cycle and in climate change. Climate change, 2021, Amsterdam, Elsevier561579

[33]

Hyvönen R, Ågren GI, Dalias P. Analysing temperature response of decomposition of organic matter. Glob Change Biol, 2005, 11(5): 770-778

[34]

Jactel H, Koricheva J, Castagneyrol B. Responses of forest insect pests to climate change: not so simple. Curr Opin Insect Sci, 2019, 35: 103-108

[35]

Jandl R, Vesterdal L, Olsson M, Bens O, Badeck F, Roc J. Carbon sequestration and forest management. CAB Rev, 2007, 2: 017

[36]

Janzen HH, Campbell CA, Brandt SA, Lafond GP, Townley-Smith L. Light-fraction organic matter in soils from long-term crop rotations. Soil Sci Soc Am J, 1992, 56(6): 1799-1806

[37]

Jenkins JC, Aber JD, Canham CD. Hemlock woolly adelgid impacts on community structure and N cycling rates in eastern hemlock forests. Can J for Res, 1999, 29(5630-645

[38]

Johnson DW. Effects of forest management on soil carbon storage. Water Air Soil Pollut, 1992, 64(1): 83-120

[39]

Johnson DW, Curtis PS. Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag, 2001, 140(2–3): 227-238

[40]

Killham K, Amato M, Ladd JN. Effect of substrate location in soil and soil pore-water regime on carbon turnover. Soil Biol Biochem, 1993, 25(1): 57-62

[41]

Kizlinski ML, Orwig DA, Cobb RC, Foster DR. Direct and indirect ecosystem consequences of an invasive pest on forests dominated by eastern hemlock. J Biogeogr, 2002, 29(10–11): 1489-1503

[42]

Klutsch JG, Negrón JF, Costello SL, Rhoades CC, West DR, Popp J, Caissie R. Stand characteristics and downed woody debris accumulations associated with a mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak in Colorado. For Ecol Manag, 2009, 258(5): 641-649

[43]

Köhl M, Linser S, Prins K. State of Europe’s forests 2020, 2020, Bonn, Forest Europe

[44]

Köster K, Püttsepp Ü, Pumpanen J. Comparison of soil CO2 flux between uncleared and cleared windthrow areas in Estonia and Latvia. For Ecol Manag, 2011, 262(2): 65-70

[45]

Kosunen M, Peltoniemi K, Pennanen T, Lyytikäinen-Saarenmaa P, Adamczyk B, Fritze H, Zhou X, Starr M. Storm and Ips typographus disturbance effects on carbon stocks, humus layer carbon fractions and microbial community composition in boreal Picea abies stands. Soil Biol Biochem, 2020, 148 107853

[46]

Kramer MG, Sollins P, Sletten RS. Soil carbon dynamics across a windthrow disturbance sequence in southeast Alaska. Ecology, 2004, 85(8): 2230-2244

[47]

Kurz WA, Apps MJ. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol Appl, 1999, 9(2): 526-547

[48]

Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L. Mountain pine beetle and forest carbon feedback to climate change. Nature, 2008, 452: 987-990

[49]

Lal R. Forest soils and carbon sequestration. For Ecol Manag, 2005, 220(1–3): 242-258

[50]

Lang KD, Schulte LA, Guntenspergen GR. Windthrow and salvage logging in an old-growth hemlock-northern hardwoods forest. For Ecol Manag, 2009, 259(1): 56-64

[51]

Leverkus AB, Gustafsson L, Lindenmayer DB, Castro J, Rey Benayas JM, Ranius T, Thorn S. Salvage logging effects on regulating ecosystem services and fuel loads. Front Ecol Environ, 2020, 18(7): 391-400

[52]

Lindroth A, Lagergren F, Grelle A, Klemedtsson L, Langvall O, Weslien P, Tuulik J. Storms can cause Europe-wide reduction in forest carbon sink. Glob Change Biol, 2009, 15(2): 346-355

[53]

Matthews B, Mayer M, Katzensteiner K, Godbold DL, Schume H. Turbulent energy and carbon dioxide exchange along an early-successional windthrow chronosequence in the European Alps. Agric for Meteor, 2017, 232: 576-594

[54]

Mayer M, Sandén H, Rewald B, Godbold DL, Katzensteiner K. Increase in heterotrophic soil respiration by temperature drives decline in soil organic carbon stocks after forest windthrow in a mountainous ecosystem. Funct Ecol, 2017, 31(5): 1163-1172

[55]

Mayer M, Prescott CE, Abaker WEA, Augusto L, Cécillon L, Ferreira GWD, James J, Jandl R, Katzensteiner K, Laclau JP, Laganière J, Nouvellon Y, Paré D, Stanturf JA, Vanguelova EI, Vesterdal L. Tamm review: influence of forest management activities on soil organic carbon stocks: a knowledge synthesis. For Ecol Manag, 2020, 466 118127

[56]

Mayer M, Rusch S, Didion M, Baltensweiler A, Walthert L, Ranft F, Rigling A, Zimmermann S, Hagedorn F. Elevation dependent response of soil organic carbon stocks to forest windthrow. Sci Total Environ, 2023, 857(Pt 3 159694

[57]

Miścicki S. Changes in the stands of the Białowieża National Park from 2000 to 2015. Leśne Prace Badawcze, 2016, 77(4): 371-379

[58]

Mo LD, Zohner CM, Reich PB, Liang JJ, de Miguel S, Nabuurs GJ, Renner SS, van den Hoogen J, Araza A, Herold M, Mirzagholi L, Ma HZ, Averill C, Phillips OL, Gamarra JGP, Hordijk I, Routh D, Abegg M, Adou Yao YC, Alberti G, Almeyda Zambrano AM, Alvarado BV, Alvarez-Dávila E, Alvarez-Loayza P, Alves LF, Amaral I, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard GA, Baker TR, Bałazy R, Banki O, Barroso JG, Bastian ML, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brearley FQ, Brienen R, Broadbent EN, Bruelheide H, Bussotti F, Cazzolla Gatti R, César RG, Cesljar G, Chazdon RL, Chen HYH, Chisholm C, Cho H, Cienciala E, Clark C, Clark D, Colletta GD, Coomes DA, Cornejo Valverde F, Corral-Rivas JJ, Crim PM, Cumming JR, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dolezal J, Dourdain A, Engone Obiang NL, Enquist BJ, Eyre TJ, Fandohan AB, Fayle TM, Feldpausch TR, Ferreira LV, Finér L, Fischer M, Fletcher C, Frizzera L, Gianelle D, Glick HB, Harris DJ, Hector A, Hemp A, Hengeveld G, Hérault B, Herbohn JL, Hillers A, Honorio Coronado EN, Hui C, Ibanez T, Imai N, Jagodziński AM, Jaroszewicz B, Johannsen VK, Joly CA, Jucker T, Jung I, Karminov V, Kartawinata K, Kearsley E, Kenfack D, Kennard DK, Kepfer-Rojas S, Keppel G, Khan ML, Killeen TJ, Kim HS, Kitayama K, Köhl M, Korjus H, Kraxner F, Kucher D, Laarmann D, Lang M, Lu HC, Lukina NV, Maitner BS, Malhi Y, Marcon E, Marimon BS, Marimon-Junior BH, Marshall AR, Martin EH, Meave JA, Melo-Cruz O, Mendoza C, Mendoza-Polo I, Miscicki S, Merow C, Monteagudo Mendoza A, Moreno VS, Mukul SA, Mundhenk P, Nava-Miranda MG, Neill D, Neldner VJ, Nevenic RV, Ngugi MR, Niklaus PA, Oleksyn J, Ontikov P, Ortiz-Malavasi E, Pan YD, Paquette A, Parada-Gutierrez A, Parfenova EI, Park M, Parren M, Parthasarathy N, Peri PL, Pfautsch S, Picard N, Piedade MTF, Piotto D, Pitman NCA, Poulsen AD, Poulsen JR, Pretzsch H, Ramirez Arevalo F, Restrepo-Correa Z, Rodeghiero M, Rolim SG, Roopsind A, Rovero F, Rutishauser E, Saikia P, Salas-Eljatib C, Saner P, Schall P, Schelhaas MJ, Schepaschenko D, Scherer-Lorenzen M, Schmid B, Schöngart J, Searle EB, Seben V, Serra-Diaz JM, Sheil D, Shvidenko AZ, Silva-Espejo JE, Silveira M, Singh J, Sist P, Slik F, Sonké B, Souza AF, Stereńczak KJ, Svenning JC, Svoboda M, Swanepoel B, Targhetta N, Tchebakova N, ter Steege H, Thomas R, Tikhonova E, Umunay PM, Usoltsev VA, Valencia R, Valladares F, van der Plas F, Do TV, van Nuland ME, Vasquez RM, Verbeeck H, Viana H, Vibrans AC, Vieira S, von Gadow K, Wang HF, Watson JV, Werner GDA, Wiser SK, Wittmann F, Woell H, Wortel V, Zagt R, Zawiła-Niedźwiecki T, Zhang CY, Zhao XH, Zhou M, Zhu ZX, Zo-Bi IC, Gann GD, Crowther TW. Integrated global assessment of the natural forest carbon potential. Nature, 2023, 624: 92-101

[59]

Moore DJP, Trahan NA, Wilkes P, Quaife T, Stephens BB, Elder K, Desai AR, Negron J, Monson RK. Persistent reduced ecosystem respiration after insect disturbance in high elevation forests. Ecol Lett, 2013, 16(6): 731-737

[60]

Morehouse K, Johns T, Kaye J, Kaye M. Carbon and nitrogen cycling immediately following bark beetle outbreaks in southwestern ponderosa pine forests. For Ecol Manag, 2008, 255(7): 2698-2708

[61]

Oades JM, Vassallo AM, Waters AG, Wilson MA. Characterization of organic matter in particle size and density fractions from a red-brown earth by solid state 13C NMR. Soil Res, 1987, 25(1): 71-82

[62]

Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D. A large and persistent carbon sink in the world’s forests. Science, 2011, 333(6045): 988-993

[63]

Parton WJ, Schimel DS, Cole CV, Ojima DS. Analysis of factors controlling soil organic matter levels in great Plains grasslands. Soil Sci Soc Am J, 1987, 51(5): 1173-1179

[64]

Peltzer DA, Allen RB, Lovett GM, Whitehead D, Wardle DA. Effects of biological invasions on forest carbon sequestration. Glob Change Biol, 2010, 16(2): 732-746

[65]

Pfeifer EM, Hicke JA, Meddens AJH. Observations and modeling of aboveground tree carbon stocks and fluxes following a bark beetle outbreak in the western United States. Glob Change Biol, 2011, 17(1): 339-350

[66]

Puget P, Chenu C, Balesdent J. Total and young organic matter distributions in aggregates of silty cultivated soils. Eur J Soil Sci, 1995, 46(3): 449-459

[67]

Pureswaran DS, Roques A, Battisti A. Forest insects and climate change. Curr for Rep, 2018, 4(2): 35-50

[68]

Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag, 2014, 5(1): 81-91

[69]

Seidl R, Schelhaas MJ, Rammer W, Verkerk PJ. Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Chang, 2014, 4(9): 806-810

[70]

Senf C, Seidl R. Natural disturbances are spatially diverse but temporally synchronized across temperate forest landscapes in Europe. Glob Chang Biol, 2018, 24(3): 1201-1211

[71]

Senf C, Seidl R. Mapping the forest disturbance regimes of Europe. Nat Sustain, 2021, 4(1): 63-70

[72]

Sexstone AJ, Revsbech NP, Parkin TB, Tiedje JM. Direct measurement of oxygen profiles and denitrification rates in soil aggregates. Soil Sci Soc Am J, 1985, 49(3): 645-651

[73]

Six J, Paustian K, Elliott ET, Combrink C. Soil structure and soil organic matter: I. Distribution of aggregate size classes and aggregate associated carbon. Soil Sci Soc Am J, 2000, 64(2): 681-689

[74]

Sollins P, Spycher G, Glassman CA. Net nitrogen mineralization from light- and heavy-fraction forest soil organic matter. Soil Biol Biochem, 1984, 16(1): 31-37

[75]

Sollins P, Homann P, Caldwell BA. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 1996, 74(1–2): 65-105

[76]

Solomon D, Lehmann J, Zech W. Land use effects on soil organic matter properties of chromic luvisols in semi-arid northern Tanzania: carbon, nitrogen, lignin and carbohydrates. Agric Ecosyst Environ, 2000, 78(3): 203-213

[77]

Stevenson FJ. Humus chemistry: genesis, composition, reactions, 1982, New York, John Wiley & Sons448

[78]

Suzuki SN, Tsunoda T, Nishimura N, Morimoto J, Suzuki JI. Dead wood offsets the reduced live wood carbon stock in forests over 50 years after a stand-replacing wind disturbance. For Ecol Manag, 2019, 432: 94-101

[79]

Szczygieł R, Kwiatkowski M, Kołakowski B. Influence of bark beetle infestation on the forest fire risk in the Bialowieza Forest. Sylwan, 2018, 162(11): 955-964

[80]

Szczygieł R, Kwiatkowski M, Tyburski Ł. Wpływ rozpadu drzewostanów w wyniku gradacji kornika drukarza (Ips typographus) na zagrożenie pożarowe Puszczy Białowieskiej. Leśne Prace Badawcze, 2023, 83(1): 1-15

[81]

Williams CA, Gu H, MacLean R, Masek JG, Collatz GJ. Disturbance and the carbon balance of US forests: a quantitative review of impacts from harvests, fires, insects, and droughts. Glob Planet Change, 2016, 143: 66-80

[82]

Yousefpour R, You B, Hanewinkel M. Simulation of extreme storm effects on regional forest soil carbon stock. Ecol Model, 2019, 399: 39-53

[83]

Zhang FM, Chen JM, Pan YD, Birdsey RA, Shen SH, Ju WM, He LM. Attributing carbon changes in conterminous U.S. forests to disturbance and non-disturbance factors from 1901 to 2010. J Geophys Res, 2012, 117(G2G02021

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

255

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/